Please use this identifier to cite or link to this item:
標題: 多元醇法製備奈米氧化金屬觸媒於低溫下催化VOCs之研究
Supported metal oxide nanocatalysts prepared with polyol process for VOCs oxidation at low temperature
作者: 陳俐穎
Chen, Li-Ing
關鍵字: catalytic incineration
polyol process
出版社: 環境工程學系所
引用: Alvim-Ferraz, M. C. M., and Gaspar, C. M. T. B., “Active carbon impregnate before activation of olive stones: catalytic activity to remove benzene from gaseous emissions.”, Journal of Physics and Chemistry of Solids, Vol. 65, pp.655-659(2004) Armadi, I.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A., “Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles”, Science, vol. 272, pp.1924-1926(1996) Arsenilevic, Z. Lj., Grbic, B.V., Grbavcic, Z., Dradic, B.N. and Terlecki-Barivcevic, A.V., “Ethylene Oxide Removal in Combined Sorbent/Catalyst System.” Chemical Engineering Science 54, pp.1519-1524(1999) Auer, E., Freund, A., Pietsch, J. and Tacke, T., “Carbons as Supports for Industrial Precious Metal Catalysts.”, Applied Catalysis A: General, vol. 173, pp. 259-271 (1998) Barresi, A. A., Baldi, G., “Deep Catalytic Oxidation of Volatile Aromatic Hydrocarbon Mixture”, Industrial Engineering Chemical Research, Vol.33, pp.2964-2974(1994). Becker, L., Förster, H., “Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites”, Applied Catalysis B: Environmental, vol. 17, pp. 43-49(1998). Bonet, F., Delmas, V., Grugeon, S., Herrera Urbina, R., Silvert, P-Y., “ Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanopartical in ethylene glycol.”, NanoStructures Materials, Vol.11, pp.1277-1284(1999) Bonet, F., Grugeon, S., Herrera Urbina, R., Tekaia-Elhsissen, K., Tarascon, J.-M., “In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases.”, Solid State Science, Vol. 4, pp.665-670(2002). Brink, R. W., Louw, R., and Mulder, P., “ Formation of Polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst ” Applied Catalysis B: Environmental, Vol.16, pp. 219-226, (1998). Burgos, N., Paulis, M., Antxustegi, M. M., Montes, M., “Deep oxidation of VOCs mixtures with platinum supported on Al2O3/Al monoliths”, Applied Catalysis B: Environmental , Vol. 38, pp.251-258(2002) Carotenuto,G., “Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size”, Applied Organometallic chemistry, Vol. 15, pp.344-351(2001) Chen, C. L., “Study on Reaction Kinetics of Volatile Organics by Catalytic Incineration Using Pt Catalyst” M. S. Thesis, Graduate Inst. Of Environ. Eng., National Sun Yet Sen Univ., Kaohusing, Taiwan, R.O.C.(1993). Chen, C. M. and Jehng, J. M., “ Amination application over nano-Mg-Ni hydrogen storage alloy catalysts” Applied Catalysis A : General, Vol. 267, pp.103-110(2004) Cheng, L. S., Yang, R. T., and Chen, N., “Iron Oxide and Chromia Supported on Titania-Pillared Clay for Selective Catalytic Reduction of Nitric Oxide with Ammonia” Journal of Catalysis, Vol 164, pp.70-81(1996) Chimentão, R.J., Kirm, I., Medina, F., Rodríguez, X., Cesteros, Y., Salagre, P., Sueiras, J. E., Fierro, J.L.G. “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles”, Applied Surface Science, vol. 252, pp.793-800(2005) Chu, H. and Lee, W. T., “ The Effect of Sulfur Poisoning of Dimethy Disulfide on the Catalytic Incineration over Pt-Al2O3 Catalyst ” The Sci. of the Total environ, Vol. 209, pp.217-224(1998) Chu, W. and Windawi, H., “Control VOCs via Catalytic Oxidation”, Chemical Engineering Progress, Vol.92, pp.37-43, March, (1996) Farrauto, R.J., Bartholomew, C.H., 1997. Fundamentals of Industrial Catalytic Processes. Blackie, Chapman & Hall, London. Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., Orfao, J. J.M., “Modification of the surface chemistry of activated carbons”, Carbon, Vol 37, pp1379-1389(1999). Gai, P.L., Kourtakis, K. and Ziemecki, S., “In site real time environmental high resolution microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in nylon 6,6.” Microscopy and Microanalysis (Springer), 2000. Garbowski, E., Labalme, V., Benhamon, N., Guillhaume, N., Primet, M., “Modifications of Pt/alumina combustion catalysts by barium addition. I. Properties of fresh catalysts”. Applied Catalysis A, General, Vol 66, pp.351–366(1995). Garetto, T. F. and Apesteguia, C. R. “Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts” Catal. Today, Vol 62, pp.189-199(2000) GoÈtz Veser, Murtaza Ziauddin, Lanny D. Schmidt, “Ignition in alkane oxidation on noble-metal catalysts”, Catalysis Today, Vol 47 219-228(1999). Heck, R.M., and Farrauto, R.J., “Catalytic Air pollution Control”, Van Nostrand Reinhold, New York (1995) Hirai, H., Nakao., Y. and Toshima, N., “Preparation of colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers”, Journal of macromolecular sciene part a : chemistry, Vol. 13, pp.727-750(1979). Jiang, L., Sun, G., Zhou, Z., Zhou, W., Xin, Q., “Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell”, Catalysis today, vol. 93-95, pp.665-670(2004) Kapteijn, F., Singoredjo, L., Vandriel, M., Andreini, A., Moulijn, J.A., Ramis, G., and Busca, G. “Alumina-Supported Manganese Oxide Catalysts: II. Surface Characterization and Adsorption of Ammonia and Nitric Oxide”, Journal of Catalysis, Vol 150, pp105-116(1994). Kim, Sang Chai, “ The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”, Journal of Hazardous Materials, Vol 91, pp.285-299(2002) Kurihara, L.K., Chow, G.M. and Schoen, P.E., “Nanocrystalline metallic powders and films produced by the polyol method.” NanoStructured Materials, Vol 5, pp.607-613 (1995) Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykios, X. “Evaluation of γ-MnO2 as a VOCs Removal Catalyst: Comparison with a Noble Metal Catalyst” Journal of Catalysis, Vol 178, pp. 214-225 (1998) Leony Leon, C. A., Radovic, L.R. In: Thrower PA, editor, Chemistry and physics of carbon, Vol. 24, New York: Marcel Dekker, pp.213-310 (1994) Li, Guohui, Hu, Linjie, Josephine M. Hill, “Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation”, Applied Catalysis A, General, Vol 301, pp.16-24(2006) Liu, Z., Ling, X. Y., Su, X., Lee, J. Y., Gan, L. M., “Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells”, Journal of Power Sources, vol. 149, pp.1-7(2005) Lojewska, J., Kolodziej, A., Dynarowicz-Latka, P., and Weselucha-Birczynska, A,. “Engineering and chemical aspects of the preparation of microstructured cobalt catalyst for VOCs combustion” Catalysis Today, Vol 101, pp.81-91(2005) Lojewska, J., Kolodziej, A., Zak, J., and Stoch, J., “Pd/Pt promoted Co3O4 catalysts for VOCs combustion. Preparation of active catalyst on metallic carrier”, Catalysis Today, Vol 105, pp.655-661 (2005) Luo, M. F., Yuan, X. X., and Zhen, X. M., “Catalyst characterization and activity of Ag–Mn, Ag–Co and Ag–Ce composite oxides for oxidation of volatile organic compounds”, Applied Catalysis A, General, Vol 175, pp.121-129 (1998). Lyubovski, M., Pfefferle, L., “Complete methane oxidation over Pd catalyst supported on a-alumina. Influence of temperature and oxygen pressure on the catalyst activity”, Catal. Today , Vol 47, pp.29–44(1999). Miyazaki, A., Balint, I., Aika, K., and Nakano, Y., “Preparation of Ru nanoparticles supported on λ -Al2O3 and its novel catalytic activity for ammonia synthesis.” Journal of Catalysis, Vol 204, 364-371 (2001). Papaefthimiou, P., Ioannides, T., and Verykios, X. E., “ Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs)’’Applied Catalysis B: Environmental, Vol 15, pp.75-92, (1998). Peña O’Shea, V.A. de la, Álvarez-Galván, M.C., Fierro, J.L.G., and Arias, P.L., “Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol”, Applied catalysis B: Environmental, Vol 57, pp.191-199(2005) Radovic, L. R., Rodríguez-Reinoso, F. In: Thrower, P.A., editor. Chemistry and Physics of Carbon, Vol. 25, New York: Marcel Dekker, pp. 243-359 (1997) Rodríguez-Reinoso, F. “Porosity in Carbons: Characterization and Application”, ed. J.W. de Patrick. Edward Arnold, London, pp.253 (1995) Rodríguez-Reinoso, F., “The role of carbon materials in heterogeneous catalysis”, Carbon, vol. 36, pp. 159-175 (1998) Salvatore Sciré, Simona Minicó, Carmelo Crisafulli, Cristina Satriano, Alessandro Pistone, “Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts”, Applied catalysis B: Environmental, Vol 40, pp.43-49(2003) Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice” 2nd ed. McGraw Hill, New York(1991) Silvert, P.-Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V., and Elbsissen, K. T., “Preparation of colloidal silver dispersions by the polyol process. Part 1.- Synthesis and characterization.” J. Mater. Chem., Vol. 6, pp.573-577(1996). Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process. Part 2.- Mechanism of particle formation” J. Mater. Chem., Vol. 7, pp.293-299(1997). Simplício L. M., Brandão S. T., Sales E. A., Lietti L., Verduraz F. B., “Methane combustion over PdO-alumina catalysts: The effect of palladium precursors”, Applied catalysis B: Environmental, Vol. 63, pp.9-14(2005) Smith, J.M., “Chemical Engineering Kinetics” 3rd ed. McGraw Hill, New York NY(1981) Spivey, J. L., “Complete catalytic oxidation of volatile organics”, Ind. Engng. Chem. Res., Vol 26,pp. 2165-2180(1987) Stoeckli, H.F., “Microporous Carbons and Their Characterization-The Present State-of-The-Art”, Carbon, vol. 28, pp. 1-6 (1990) Tichenor, B.A. and Palazzolo, M.A., “Destruction of volatile organic compounds vis catalytic incineration”, Environ. Prog., Vol.6, pp.172-176, (1987) Veser, Götz; Ziauddin, Murtaza; Schmidt, Lanny D.,“Ignition in alkane oxidation on noble-metal catalysts”, Catalysis Today, vol.47, pp. 219-228(1999). Wang, Ching Huei ,“Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene”, Chemosphere, Vol.55, NO.1, pp.11-17(2004). Wang, S. and Lu, G.Q. “Effects of Acidic Treatments on the Pore and Surface Properties of Ni Catalyst Supported on Activated Carbon.” Carbon, Vol 36(3), 283-292 (1998). Wu, J. C.-S., Chang T.- Y., “VOCs deep oxidation over Pt catalysts using hydrophobic supports”, Catalysis Today, Vol. 44, pp.111-118(1998) Wu, J. C.-S., Lin, Z.-A., Tsai, F.-M., Pan, J.-W., “Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts”, Catalysis Today, Vol. 63, pp.419-426(2000) Yang, R.T., Li, W.B., “Ion-Exchanged Pillared Clays: A New Class of Catalysts for Selective Catalytic Reduction of NO by Hydrocarbons and by Ammonia”, Journal of Catalysis, Vol 155, pp. 414-417(1995) Yang, R.T., Li, W., Sirilumpen, M., “Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays”, Applied Catalysis B: Environmental, Vol 11, pp.347-363(1997) Yang, R.T., Tharappiwattananon, N., Long, R.Q., “Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen” Applied Catalysis B: Environmental, Vol 19, pp.289-304(1998) Yoo, K.S., Kim, S.D. and Park, S.B. “Sulfation of Al 2O3 in Flue Gas Desulfation by CuO/γ-Al2O3 Sorbent.” Industrial & Engineering Chemistry Research, 33, 1786-1791(1994). Zhang, M., Zhou, B., Chuang, K. T., “ Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures” Applied Catalysis B: Environmental, Vol 13,pp.123-130(1997) Zhang Jian, Xu Hengyong, Ge Qingjie, Li Wenzhao, “Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, Characterization and promoter effect” Catalysis Communications, Vol. 7, pp148-152(2006) Zhou, Y., Jin, S., Qiu, G., Yang, M., “ Preparation of ultrafine nickel powder by polyol method and its oxidation product” Materials Science and Engineering B, Vol. 122, pp.222-225(2005) 王世敏,許祖勛,傅晶, “奈米材料原理與製備”,五南圖書出版股份有限公司,台北 (2004) 申永順,顧洋,「以高級氧化程序處理空氣中揮發性有機污染物之研究與應用」,工業污染防治,第14 卷,第56 期,pp.278-295,1995 年。 江旭禎,儀器總覽:化常分析儀器,國科會,第77-79頁 吳榮宗, “工業觸媒概論” ,國興出版社,新竹 (1995)。 吳玟玲,“控制揮發性有機物(VOCs)的熱焚化與觸媒焚化技術”,工業污染防治第39期,第139-153頁,(1991) 李秉傑、邱宏明、王奕凱, “非均勻系催化原理與應用”,渤海堂文化事業有限公司,台北 (1988)。 林麟易、洪彰懋、樓基中,“以Pd 觸媒處理排氣中1,3-丁二烯之研究”,第十六屆空氣污染控制技術研討會論文集,第196-200頁,(1999) 柯子星、朱信、曾庭科 “以Pt/γ-Al2O3觸媒焚化處理甲基異丁基酮之研究” 第十六屆空氣污染控制技術研討會論文集,高雄,2001年。 洪文雅,“揮發性有機廢氣處理技術簡介” 台灣環保產業雙月刊,第21期,pp.(2003) 陳淨修,楊慶熙,「台灣地區有害空氣污染物管制」,工業污染防治,第52 卷,pp.1-35,1994 年。 許漢軒、朱信、曾庭科、柯俊德 “ 以Mn2O3/ Al2O3觸媒焚化處理三氯乙烯之研究 ’’ 第十七屆空氣污染控制技術研討會論文集,第262-267 頁,(2000) 楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工系,碩士論文,(2000) 葉家伶,“以三向觸媒同時處理焚化廢氣中有機污染物、CO 及NOX之研究” 國立中興大學環境工程研究所,碩士論文,(2002) 鄭乙任,“ 影響觸媒焚化之主要因素及操作維護注意事項之探討”,工業污染防治 報導,第123期,第8-9頁,(1999) 鄭漢聰,“活性碳擔持觸媒對NO去除之研究” 國立中興大學環境工程研究所,碩士論文,(2005)
摘要: 揮發性有機污染物質(Volatile Organic Compounds,VOCs)已被認為是主要空氣污染物。其中觸媒焚化法為控制VOCs最重要的技術。 多元醇法(polyol process)操作簡單且金屬大小與形狀容易控制。應用於觸媒製備方面,不但可以獲得大小均一的金屬活性相外,擔持於擔體上的分散性也很好。因此,本研究目的就是利用多元醇法來製備過渡金屬觸媒,期望此種製備法所製備的觸媒,可應用於觸媒焚化來去除VOCs。本實驗選擇活性碳當擔體,銅、鈷、鐵、鎳為金屬活性相,並且以甲苯為目標污染物來進行實驗探討。最後再利用BET、XRPD、ICPMS、FESEM等分析,來觀察微觀的觸媒特性。 實驗結果發現,此種方法所製備的觸媒,金屬分散性好、顆粒大小屬於奈米級的。金屬還原時間越久,顆粒越大,對甲苯轉化率較差。活性碳擔持銅、鈷、鐵、鎳觸媒,其活性大小分別為:銅>鈷>鐵>鎳。對甲苯的去除效率,反應溫度越高、甲苯濃度越低、空間速度越小,則去除效果越佳。不同揮發性有機污染物-BTX的轉化率大小分別為:二甲苯 >甲苯 >苯。由研究結果顯示發現,多元醇法可成功製備奈米觸媒,並且應用於觸媒焚化法來去除揮發性有機污染氣體。
Volatile Organic Compounds (VOCs) are considered as main air pollutants, and catalytic incineration is one of the most important methods for VOCs destruction. Polyol process is a simple method, which can easily control the particle size and shape, and can be applied for the preparation of catalyst. This method could obtain the synthesis of uniform metal particle size and also led to high dispersion over support. Therefore, the purpose in this study was to prepare transition metal oxide catalyst with the polyol process, and subsequently evaluate the feasibility of catalytic incineration of VOCs. Activated carbon was selected as support material, and copper, cobalt, iron, and nickel were applied as catalytic active phases. Toluene was chosen as the representative VOCs to assess the feasibility of catalytic incineration of aromatics using a supported transition metal catalyst. Catalyst was characterized by means of BET、XRPD、ICPMS、FESEM. It was found that the polyol process prepared catalysts showed well-dispersed nanoscale metal particle. The increase of reduction time and partical size led the lower toluene conversion. The activity of metal/activated carbon with respect to metal was observed to follow the order : Cu > Co > Fe > Ni. Increasing the reaction temperature, decreasing toluene concentration and space velocity resulted in better conversion of VOCs. The activity of Cu/activated carbon with respect to the VOCs molecule was observed to follow the sequence : xylene > toluene > benzene. The obtained results indicated that the polyol process could successfully manufacture the nanocatalysts which could be applied to remove VOCs by catalytic incineration.
其他識別: U0005-2006200616572100
Appears in Collections:環境工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.