Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/51946
標題: 褐藻酸鈣微膠囊化及海藻糖添加對Lactobacillus reuteri冷凍安定性之影響
Effects of calcium-alginate microencapsulation and trehalose addition on the freezing stability of Lactobacillus reuteri
作者: Teh, Su-Fen
鄭淑芬
關鍵字: Lactobacillus reuteri
Lactobacillus reuteri
microencapsulation
cryoprotectant
trehalose
Ca-alginate
微膠囊化技術
冷凍保護劑
海藻糖
褐藻酸鈣
出版社: 食品暨應用生物科技學系所
引用: 王學堯 (2001) 乳酸菌在食品加工上的應用。食品資訊,(184):54-57。 方繼、李根永、李清福、林建谷、林順富、范晉嘉、陳惠英、虞積凱、蔡國珍 (1999) 現代食品微生物學。pp. 151-167, 361-379, 404-418, 偉明圖書有限公司,台 北。 李秀、賴滋漢(1992) 食品中有機酸的定量。食品檢驗與分析,p.64。富林出版社, 台中。 吳惠芬、毛胜勇、姚文、朱偉云(2005) 豬源乳酸菌產乳酸及其抑菌特性研究。微生物學通報,32:79-84。 邵玉宇、陳霞、楊梅、烏蘭、張和平 (2010) 乳酸菌的抗冷凍性及耐受機理。微 生物學通報,37(2):274−279。 林福美 (2004) 乳酸菌與免疫調節作用。食品工業,36:16-26。 洪瑞琳 (2005) 乳酸發酵蔬菜萃取物對乳酸發酵蔬菜萃取物對4-Nitroquinoline N-oxide及Benzo[a]pyrene之抗致突變性研究。臺灣大學食品科技研究所碩 士論文,台北。 神戶千幸、內田金治 (1984) 醬油乳酸菌Pediococcus halophilusの還原力と 醬油諸味の酸化還原電位にていて。農藝化學會誌,58: 487-490. 徐亞莉 (2009) Lactobacillus reuteri冷凍耐受性提升的探討:細胞微膠囊化及海藻 糖添加的利用。國立中興大學食品暨應用生物科技學所碩士論文,台中。 翁麗華 (2006) 攝食復合乳酸菌粉及優酪乳對健康成人腸道菌相及致突變性之 影響。臺灣大學食品科技研究所碩士論文,台北。 陳至潔 (2008) 細胞固定化對嗜酸乳桿菌冷凍乾燥及控低溫真空乾燥的影響:以褐藻酸鈣作為包埋固定化基質的探討 。國立中興大學食品暨應用生物科技學所碩士論文,台中。 陳佩玉 (2005) 菊糖有孢子乳桿菌潛在益生功效的研究。中國醫藥大學營養學所碩士論文,台中。 楊媛绚 (1998) 原生保健性菌種(probiotics)與益菌助生質(prebiotics)之應用。 食品工業,30(2): 11-21. 廖啟成 (1998) 乳酸菌之分類及應用。食品工業,30(2):1-10。 潘子明 (2008) 我國乳酸菌最近的研究趨勢暨通過健康食品認證之乳酸菌產品現況。健康世界,Feb.:41-66。 劉威,姚文,朱偉雲 (2006) 人體與腸道微生物間的互惠共生關係。世界華人消 化雜誌,14(11):1081-1088。 盧當文 (2005) 乳酸菌的活性對於其在Caco-2 與HT-29 細胞株黏附的影響。大 同大學生物工程研究所碩士論文,台北。 Anal, A.K. and Singh, H. (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology 18:240-251. Ardo, Y. (2006) Flavour formation by amino acid catabolism. Biotechnology Advances 24(2):238-242. Arunachalam, K.D. (1999) Role of Bifidobacteria in nutrition, medicine and technology. Nutrition Research 19(10):1559-1597. Audet, P., Paquin, C., and Lacroix, C. (1988) Immobilized growing lactic acid bacteria with k-carrageenan-locust bean gum gel. Applied Microbiology and Biotechnology 29(1):11–18. Augst, A. D., Kong, H. J., and Mooney, D. J. (2006) Alginate hydrogels as biomaterials. Macromolecular Bioscience 6(8):623-633. Bakhach, J. (2009) The cryopreservation of composite tissues: Principles and recent advancement on cryopreservation of different type of tissues. Organogenesis 5(3):119-26. Batt, C. A., Patel, P., and Robinson, R. K. (2000) Lactococcus. Encyclopedia of Food Microbiology, Academic Press, London. pp.1164-1171. Begley, M., Hill, C., and Gahan, C. G. (2006) Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology 72(3):1729-1738. Behare, P. V., Singh, R., Kumar, M., Prajapati, J. B., and Singh, R. P. (2009) Exopolysaccharides of lactic acid bacteria: a review. Journal of Food Science and Technology 46(1):1-11. Bergmaier, D., Champagne, C. P., and Lacroix, C. (2003) Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. Journal of Applied Microbiology 95(5):1049-1057. Bernet, M. F., Brassart, D., Neeser, J. R., and Servin, A. L. (1994) Lactobacillus acidophilus LA-1 binds to cultured human intestinal cell lines and inhibits cell-attachment. Gut 35(4):483-489. Bezkorovainy, A. (2001) Probiotics: determinants of survival and growth in the gut. American Journal of Clinical Nutrition 73(2):399S-405S. Bhandal, I. S., Hauptmann, R. M., and Widholm, J. M. (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiology 1985; 78(2):430-432. Bibiloni, R., Perez, P. F. and De Antoni, G. L. (1999) Will a high adhering capacity in a probiotic strain guarantee exclusion of pathogens from intestinal epithelia? Anaerobe 5(5):519-524. Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L., and Gershwin, M. E. (2009) Probiotics and immunity. Journal of Gastroenterology 44(1):26-46. Brannon, P. M., Carpenter, T. O., Fernandez, J. R., Gilsanz, V., Gould, J. B., Hall, K. E., Hui, S. L., Lupton, J. R., Mennella, J., Miller, N. J., Osganian, S. K., Sellmeyer, D. E., Suchy, F. J., and Wolf, M. A. (2010) NIH Consensus Development Conference Statement: Lactose Intolerance and Health. NIH Consensus State of the Science Statements 27(2):1-27. Brinques, G. B. and Ayub, M. A. Z. (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of Food Engineering 103(2):123-128. Briske-Anderson, M. J., Finley, J. W., and Newman, S. M. (1997) The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proceedings of the Society for Experimental Biology and Medicine 214(3):248-257. Casas, I. A. and Dobrogosz, W. J. (1998) Lactobacillus reuteri: An overview of a new probiotic for humans and animals. Microecology and Therapy 26:221-231. Casas, I. A. and Dobrogosz, W. J. (2000) Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microbial Ecology in Health and Disease 12:247-285. Chandramouli, V., Kailasapathy, K., Peiris, P. and Jones, M. (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in stimulated gastric conditions. Journal of Microbiological Methods 56(1):27-35. Charteris,W. P., Kelly, P.M.,Morelli, L. and Collins, J. K. (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinaltract. Journal of Applied Microbiology 84: 759-768. Chen, C. N., Liang, H. F., Lin, M. H. and Sung, H. W. (2001) A natural sterilant (reuterin) fermented from glycerol using lactobacillus reuteri: fermentation conditions. Journal of Medical and Biological Engineering 21(4):205-212. Clegg, J. S. (1986) The physical properties and metabolic status of Artemia cysts at low water contents: the "Water Replacement Hypothesis". In: Leopold AC. Ed. Membranes, Metabolism, and Dry Organisms. London: Comstock Publication Association, pp.169-187. Collado, M. C., Isolauri, E., Salminen, S., and Sanz, Y. (2009) The impact of probiotic on gut health. Current Drug Metabolism 10(1):68-78. Collar, C., Bollain, C., Angioloni, A. (2005) Significance of microbial transglutaminase on the sensory, mechanical and crumb grain patterns of enzyme supplemented fresh pan breads. Journal of Food Engineering 70(4):479–488. Conrad, P. B., Miller D. P., Cielenski, P. R. and de Pablo, J. J. (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology 41(1):17–24. Cotter, P. D., and Hill, C. (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67(3):429-453. Cross, M. L. (2002) Microbes versus microbes: immune signal generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunology and Medical Microbiology 34(4):245-253. Crowe, J. H., and Crowe, L. M. (2000) Preservation of mammalian cells ─ learning nature’s tricks. Nature Biotechnology. 18(2): 145-146. Crowe, J. H., Crowe, L. M., and Chapman, D. (1984) Preservation of membranes in anhydrobiotics organism: The role of trehalose. Science 223(4637):701-703. Crum-Cianflone, N. F. (2008) Salmonellosis and the gastrointestinal tract: more than just peanut butter. Current Gastroenterology Reports 10(4):424-431. D’Aoust J. Y. (1991) Pathogenicity of foodborne Salmonella. International Journal of Food Microbiology 12(1):17-40. Das, M. K., and Senapati, P. C. (2008) Furosemide-loaded alginate microspheres prepared by ionic cross-linking technique: morphology and release characteristics. Indian Journal of Pharmaceutical Sciences 70(1):77–84. De Keersmaecker, S. C., Verhoeven, T. L., Desair, J., Marchal, K., Vanderleyden, J. and Nagy, I. (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiology Letters 259(1):89-96. de Vrese, M., and Schrezenmeir, J. (2008) Probiotics, Prebiotics, and Synbiotics. Advances in Biochemical Engineering/Biotechnology 111:1-66. de Vos, P., Faas, M. M., Spasojevic, M., and Sikkema, J. (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 20(4):292-302. DiBaise, J. K., Zhang, H., Crowell, M. D, Krajmalnik-Brown, R., Decker, G. A., and Rittmann, B. E. (2008) Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings 83(4):460-469. Ding, W. K. and Shah, N. P. (2007) Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science 72(9):M446-450. Ding, W. K. and Shah, N. P. (2008) Survival of free and microencapsulated probiotic bacteria in orange and apple juices. International Food Research 15(2):219-232. Draget, K. I., Skjak-Braek, G.., and Smidsrod, O. (1997) Alginate based new materials. International Journal of Biological Macromolecules 21:47-55. Elbein, A. D., Pan, Y. T., Pastuszak, I., and Carroll, D. (2003) New insights on trehalose: A multifunctional molecule. Glycobiology 13(4):17-27. Ertesvag, H. and Valla, S. (1998) Biosynthesis and application of alginates. Polymer Degradation and Stability 59(1-3):85-91. End, N. and Schoning, K. U. (2004) Immobilized Catalysts in Industrial Research and Application. Topics in Current Chemistry 242: 241-271. Frazier, W. C. and Westhoff, D. C. (1988) In: Food Microbiology. 4th edn. McGraw-Hill, New Delhi, pp. 412–419. Fayol-Messaoudi, D., Berger, C. N., Coconnier-Polter, M. H., Lievin-Le Moal, V. & Servin, A. L. (2005) pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology 71(10):6008-6013. Fernandez, M. F., Boris, S., and Barbes, C. (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Journal of Applied Microbiology 94(3):449-455. Fooks, L. J., Fuller, R., and Gibson, G. R. (1999) Prebiotics, probiotics and human gut microbiology. International Dairy Journal 9(1):53-61. Ford, H. R., Avanoğlu, A., Boechat, P. R., Melgoza, D., LumCheong, R. S., Boyle, P., Garrett, M., and Rowe, M. I. (1996) The microenvironment influences the pattern of bacterial translocation in formula-fed neonates. Journal of Pediatric Surgery 31(4):486-489. Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25(6):375-388. Gardiner, G. E., O’Sullivan, E., Kelly, J., Auty, M. A., Fitzgerald, G. F., Collins, J. K., Ross, R. P., and Stanton, C. (2000) Comparative survival rates of human derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Applies and Environmental Microbiology 66(6):2605-2612. Gatto, E., Peddie, F., and Andrews, S. (1993) Acidification power: performance evaluation of freeze-dried lactic acid bacteria. Food Australia 45(3):124-128. Giannell, R. A., Broitman, S.A., and Zamcheck, N. (1972) Grastric acid barrier to ingested microorganism in men: studies in vivo and in vitro. Gut 13:251. Gopal, P. K., Prasad, J., Smart, J., and Gill, H. S. (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. International Journal of Food Microbiology 67(3):207-216. Gouin, S. (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology 15(7-8):330-347. Greene, J. D. and Klaenhammer, T. R. (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Applied Environmental Microbiology. 60(12): 4487–4494 Gueimonde, M., Salminen, S., and Isolauri, E. (2006) Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immnology and Medical Microbiology. 48(1): 21-25. Gupta, V. and Garg, R. (2009) Probiotics. Indian Journal of Medical Microbiology 27:202-209. Han, B. and Bischof, J. C. (2004) Direct cell injury associated with eutectic crystallization during freezing. Cryobiology 48(1):8-21. Hansen L. T., Allan-Wojtas, P. M., Jin Y. L. and Paulson, A. T. (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology 19(1):35-45. Hao, W. L., and Lee, Y. K. (2004) Microflora of the gastrointestinal tract: a review. Methods in Molecular Biology 268:491-502. Holzapfel, W.H., Haberer, P., Snel, J., and Schillinger, U., and Huis in''t Veld, J. H. (1998) Overview of gut flora and probiotics. International Journal of Food Microbiology 41:85-101. Imase, K., Tanaka, A., Tokunaga, K., Sugano, H., Ishida, H., and Takahashi, S. (2007) Lactobacillus reuteri tablets suppress Helicobacter pylori infection--a double-blind randomised placebo-controlled cross-over clinical study. Journal of the Japanese Association for Infectious Diseases 81(4):387-93. Insel, P. Turner, R. E., and Ross, D. Nutrition. In: Digestion and Absorption. Jones and Bartlett Publishers, Massachusetts, USA. pp.64-67. Iturriaga, G., Suarez, R., and Nova-Franco, B. (2009) Trehalose metabolism: from osmoprotection to signaling. International Journal of Molecular Sciences 10(9):3793-3810. Jain, S., Yadav, H., and Sinha, P. R. (2009) Probiotic dahi containing Lactobacillus casei protects against Salmonella enteritidis infection and modulates immune response in mice. Journal of Medicinal Food 12(3): 576-583. Jankowska, A., Laubitz, D., Antushevich, H., Zabielski, R., and Grzesiuk, E. (2008) Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells. Journal of Biomedicine and Biotechnology 2008:357964. Johansson, M. L., Molin, G., Jeppsson, B., Nobaek, S., Ahrne, S., and Bengmark, S. (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Applied and Environmental Microbiology 59(1):15-20. Jones, M. L., Chen, H., Ouyang, W., Metz, T., and Prakash, S. (2004) Microencapsulated genetically engineered Lactobacillus plantarum 80 pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. Journal of Biomedicine and Biotechnology 2004(1): 61–69. Jyothi, N.V., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., and Srawan, G. Y. (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation 27(3):187-197. Kailasapathy, K. (2005) Survival of free and encapsulated probiotic bacteria and effect on the sensory properties of yoghurt. Food Science and Technology 1:1–2. Kara, B. (1988) Predication of the fermentation performance of brewing yeast with the acidification power test. Journal of the Institute of Brewing 94:153. Kierstan, M. P. J., and Bucke, C. (1977) Entrapment of cells in calcium alginate gels. Biotechnology and Bioengineering 19:387–392. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Review, 12(1-3):39–85. Krasaekoopt, W., Bhandari, B., and Deeth, H. (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal 13(1):3-13. Koster, K. L. (1991) Glass formation and dessication tolerance in seeds. Plant Physiology 96(1):302-304. Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., and Shimazaki, K. (2004) Screening of dairy yeast strains for probiotic applications. Journal of Dairy Science 87(12):4050-4056. Laburthe, M. and Aminaroff, B. (1992) Peptide receptors in intestinal epithelium. In: Handbook of physiology. Oxford University Press, Oxford, UK. pp. 215-243. Lee, do. K., Jang, S., Baek, E. H., Kim, M. J., Lee, K. S., Shin, H. S., Chung, M. J., Kim, J. E., Lee, K. O., and Ha, N. J. (2009) Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids in Health and Disease 8:21. Lin, C. K., Tsai, H. C., Lin, P. P., Tsen, H. Y., and Tsai, C. C. (2008) Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell invasion to the human Caco-2 epithelial cell. Anaerobe 14(5):251-255. Lins, R. D., Pereira, C. S., and Hunenberger, P. H. (2004) Trehalose-protein interaction in aqueous solution. Proteins 55(1):177-186. Lu, Y. C., Yin, L. T., Chang, W. T., and Huang, J. S. (2010) Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. Journal of Bioscience and Bioengineering 110(6):709-715. Mahajan, R., Gupta, V. K., and Sharma, J. (2010) Comparison and Suitability of Gel Matrix for Entrapping Higher Content of Enzymes for Commercial Applications. Indian Journal of Pharmaceutical Sciences 72(2):223-228. Mahmud, S. A., Hirasawa, T., and Shimizu, H. (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of Bioscience and Bioengineering 109(3):262-266. Matijaxic, B. B., Narat, M., Zori M. P., and Rogelj, I. (2006) Ability of Lactobacillus gasseri K7 to inhibit Escherichia coli adhesion in vitro on Caco-2 cells and ex vivo on pigs'' jejunal tissue. International Journal of Food Microbiology 107(1):92-96. Mattila-Sandholm, T., Matto, J., and Saarela, M. (1999) Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora. International Dairy Journal 9(1):25–35. McFarland, L. V. (2007) Meta-analysis of probiotics for the prevention of traveller’s diarrhoea. Travel Medicine and Infectious Disease 5(2): 97–105. McIntosh, G. H. (1996) Probiotics and colon cancer prevention. Asia Pacific Journal of Clinical Nutrition 5:48-52. Millette, M., Luquet, FM., and Lacroix M. (2007) In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Letters in Applied Microbiology. 44:314–319 Mitsuoka, T. (1992) Intestinal flora and aging. Nutrition Reviews 50(12):438-446. Murry, A. C., Hinton, A., and Morrison, H. (2004) Inhibition of growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on chicken feed media by. Lactobacillius salivarius and Lactobacillus plantarum. International Journal of Poultry Science 3(9):603-607. Muthukumarasamy, P., Allan-Wojtas, P., and Holley, R. A. (2006) Stability of Lactobacillus reuteri in different types of microcapsules. Journal of Food Science 71:M20-M24. Niven, C. F., Jr., and Evans J. B. (1957) Lactobacillus viridescens nov. spec. a heterofermentative species that produces a green discoloration of cured meat pigments. Journal of Bacteriology 73(6):758-759 Noriega, L., Gueimonde, M., Sanchez, B., Margolles, A., and de los Reyes-Gavilan, C. G. (2004) Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. International Journal of Food Microbiology 94(1):79-86. Nowak, A. and Libudzisz, Z. (2009) Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. European Journal of Nutrition 48(7):419-427. Ogunbanwo, S. T., Sanni, A. I. and Onilude, A. A. (2003) Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology 2:219-227. O’Hara, A. M. and Shanahan, F. (2007) Mechanisms of action of probiotics in intestinal diseases. Scientific World Journal 7:31-46. Ooi, L. G. and Liong, M. T. (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. International Journal of Molecular Sciences 11(6):2499-2522. Opekarova, M. and Sigler, K. (1982) Acidification power: indicator of metabolic activity and autolytic changes in Saccharomyces cerevisiae. Folia Microbiology 27: 395-403. O''Sullivan, M. and O''Morain, C. (2003) Food intolerance: dietary treatments in functional bowel disorders. Current Treatment Options in Gastroenterology 6(4):339-345. Ouwehand, A. C. and Salminen, S. J. (1998) The health effects of cultured milk products with viable and non-viable bacteria. International Dairy Journal 8(9):749–758. Patra, F., Tomar, S. K., and Arora, S. (2009) Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. Journal of Food Science 74(1):R16-23. Pegg, D. E. (2007) Principles of cryopreservation. Methods in Molecular Biology 368:39-57. Prasad, J., Harsharanjit, G., Smart, J., and Gopal, P. K. (1998) Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal 8(12):993-1002 Quain, D. E., (1988) Studies on yeast physiologyimpact on fermentation performance and product quality. Journal of the Institute of Brewing 89, 38-40. Reddy, G., Altaf, Md., Naveena, B.J. Venkateshwar, M., and Kumar, E.V. (2008) Amylolytic bacterial lactic acid fermentation—A review. Biotechnology Advances 26 (1) 22-34. Resta-Lenert, S. C., and Barrett, K. E. (2009) Modulation of intestinal barrier properties by probiotics: role in reversing colitis. Annals of the New York Academy of Sciences 1165:175-182. Richards, A. B., Krakowka, S., Dexter, L. B., Schmid, H., Wolterbeek, A. P., Waalkens-Berendsen, D. H., Shigoyuki, A., and Kurimoto, M. (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology 40(7):871-98. Riis, S. B., Pedersen, H. M., Sorensen, N.K. and Jakobsen, M. (1995) Flow cytometry and acidification power test as rapid techniques for determination of the activity of starter cultures of Lactobacillus delbrueckii ssp. Bulgaricus. Food Microbiology 12: 245-250. Sanders, M. E. (2008) Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases 46 (Supplement 2):S58-61. Santivarangkna, C., Higl, B., and Foerst, P. (2008) Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiology 25(3):429-41. Santivarangkna, C., Kulozik, U., and Foerst, P. (2008) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology 105(1):1-13. Savino, F., Cordisco, L., Tarasco, V., Palumeri, E., Calabrese, R., Oggero, R., Roos, S., and Matteuzzi, D. (2010) Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 126(3):e526-33. Savino, F., Pelle, E., Palumeri, E., Oggero, R., and Miniero, R. (2007) Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics 119(1):e124-30. Schiraldi, C., Di Lernia, I., and De Rosa, M. (2002) Trehalose production : exploiting novel approaches. Trends in Biotechnology 20(10):420-425. Schilinger, U. and Lucke, F. K. (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology 55:1901-1906. Sedman, P. C., Macfie, J., Sagar, P., Mitchell, C. J., May, J., Mancey-Jones, B., and Johnstone, D. (1994) The prevalence of gut translocation in humans. Gastroenterology 107(3):643-9. Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., Shimoni, E. (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International 43(1):193-202. Sheu, T. Y., and Marshall, R. T. (1993) Microencapsulation of lactobacilli in calcium alginate gels. Journal of Food Science 54(3),557–107561. Sigler, K., Mikyska, A., Kosar, K., Gabriel, P., and Dienstbier, M. (2006) Factors affecting the outcome of the acidification power test of yeast quality: critical reappraisal. Folia Microbiology 51:525-534. Simon, K. and Fuller, S. D. (1985) Cell surface polarity in epithelia. Annual Review of Cell Biology 1:243-288. Skjak-Brak, G., Grasdalen, H., and Smidsrod, O. (1989) Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers 10(1):31-54 Solano, C., Sesma, B., Alvarez, M., Urdaneta, E., Garcia-Ros, D., Calvo, A., and Gamazo, C. (2001) Virulent strains of Salmonella enteritidis disrupt the epithelial barrier of Caco-2 and HEp-2 cells. Archives of Microbiology 175(1):46-51. Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., and Kailasapathy, K. (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology 62(1-2):47-55. Singhi, S. C. and Baranwal, A. (2008) Probiotic Use in the Critically lLL. Indian Journal of Pediatrics 75(6):621-627. Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M. H., and Hugenholtz, J. (2003) Effects of cultivation conditions on folate production by lactic acid bacteria. Applied of Environmental Microbiology 69(8):4542-4548 Tang, P., Fobister, V., Pucciarelli, M. G. and Finly, B. B. (1993) Methods to study bacterial invasion. Journal of Microbiological Methods 18(3):227-240 Tannock, G. W. (1995). Microecology of the gastrointestinal tract in relation to lactic acid bacteria. International Dairy Journal 5:1059-1070. Temmerman, R., Huys, G., and Swings, J. (2004) Identification of lactic acid bacteria: culture-dependent and culture independent methods. Food Science and Technology 15:348-359. Teramoto, N., Sachinvala, N. D., and Shibata, M. (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773-816. Thies, C. (1996) A survey of microencapsulation processes. “Microencapsulation: Methods and Industrial Applications”. Marcel Dekker. Ink., New York. pp1-19. Tok, E. and Aslim, B. (2010) Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiology and Immunology 54(5):257-64. Tsen, J.-H., Huang, H.-Y., Lin, Y.-P., and King, V. A.-E. (2007) Freezing resistance improvement of Lactobacillus reuteri by using cell immobilization. Journal of Microbiological Methods 70:561-564. Tuomola, E. M. and Salminen, S. J. (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. International Journal of Food Microbiology 41(1):45-51. Valeur, N., Engel, P., Carbajal, N., Connolly, E., and Ladefoged, K. (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Applied and Environmental Microbiology 70(2):1176-1181. Vanderpool, C., Yan, C., and Polk, D. B. (2008) Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases 14(11):1585-1596. Van Dijck, P., Colavizza, D., Smet, P., and Thevelein, J. M. (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology 61(1):109-115. Velge, P., Cloeckaert, A., and Barrow, P. (2005) Emergence of Salmonella epidemics: The problems related to Salmonella enteric serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Veterinary Research 36(3):267-288. Wang, K.Y., Li, S. N., Liu, C. S., Perng, D. S., Su, Y. C., Wu, D. C., Jan, C. M., Lai, C. H., Wang, T. N, and Wang, W. M. (2004) Effects of ingesting Lactobacillus-and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. American Journal of Clinical Nutrition 80:731-741. Wang, Y., Ganzle, M. G., and Schwab, C. (2010) EPS synthesized by Lactobacillus reuteri decreases binding ability of enterotoxigenic Escherichia coli to porcine erythrocytes. Applied and Environmental Microbiology 76(14):4863-4866.
摘要: Lactobacillus reuteri為來自人體的天然益生菌種,具有許多益生功效,不僅可以吸附腸道的黏膜,存活於人體的腸道中,而且可產生抗菌物質,抑制病原菌。不過往往乳酸菌經人攝取後,受到人體消化道內胃酸、膽鹽的作用,到達下消化道之存活菌數並不高,因而無法吸附定殖以便發揮其益生效用。為了增加乳酸菌在惡劣的環境中的存活率,所以本研究利用褐藻酸鈣對L. reuteri進行微膠囊化處理,再添加2%海藻糖作為冷凍保護劑,然後放置於-60℃下來進行貯藏,探討其對L. reuteri在冷凍貯藏中的保護效果,並對其在腸道中吸附性的影響,以及在模擬人體胃腸道中不良環境因子之抵抗性(分別是以pH 2、3、4之酸液及0.1%、0.2%、0.4%之膽鹽溶液進行試驗),與對腸炎沙門桿菌(Salmonella enteritidis)之抑菌能力等進行研究,希望L. reuteri可藉由海藻糖加上微膠囊的保護下,除了在冷凍貯藏中之存活率可以提升外,同時也能提高菌體在惡劣環境下的耐受能力,以便增加菌體在經過人體腸胃道的存活率。結果顯示,微膠囊化技術及海藻糖能有效提高菌株在冷凍貯藏後的存活率,而微膠囊化技術有助於提升菌體在冷凍後對膽鹽的耐受力,但卻無法提升菌體對酸的耐受力。在產酸試驗方面,微膠囊化技術及海藻糖可以提高在冷凍儲藏後L. reuteri的產酸能力,表示其能夠有效保護冷凍後菌體的活性。在抑菌圈實驗中,乳酸菌上清液皆對腸炎沙門桿菌有抑菌功效。隨著冷凍儲藏時間的增加,乳酸菌上清液的抑菌效果有顯著性減弱的趨勢(p<0.05)。其中以經微膠囊化處理及添加了海藻糖的乳酸菌在經過冷凍儲藏後,其抑制腸炎沙門氏菌生長的能力較其他組別的好,並且對於Caco-2細胞也有較佳的吸附力。此外,L. reuteri不具侵入性,對人體健康安全無害。
Lactobacillus reuteri is a species of microbes which is naturally present in the animal stomach and intestine microflora could benefit the human health. L. reuteri produces reuterin that can inhibit the growth of a broad range of pathogenic microbes. However, a major problem is low viability of lactic acid bacteria when arriving at the lower digestive tract due to the gastric acid and bile salts existed in the gastrointestinal system. In order to increase the viability of lactic acid bacteria at the harsh environments, microencapsulation could be used to improve probiotic survival against severe environmental factors. In this study, Ca-alginate was applied to L. reuteri for microencapsulation and trehalose 2% (w/v) was used as a cryoprotectant for protecting the cell during -60°C frozen storage so as to study their protection effect on the enhancement of cell survival during frozen storage and their adhesion in the intestine. We also focused on the resistance of lactic acid bacteria against adverse environmental factors (pH 2, 3, 4 and 0.1%, 0.2%, 0.4% bile salt) and their antibacterial ability on Salmonella enteritidis. Results showed that microencapsulation techniques and trehalose not only protect L. reuteri from freezing injury but also maintain their activity for the production of acid. Microencapsulation could enhance bile salts tolerance of L. reuteri but unable to improve on acid tolerance. Besides, both microencapsulation techniques and trehalose enable to increase the inhibition of L. reuteri against Salmonella enteritidis and adherence to Caco-2 cells after frozen storage. In the well diffusion assay, the supernatant of L. reuteri could inhibit the growth of Salmonella enteritidis. As the frozen storage time increased, the antibacterial activity of L. reuteri supernatants significantly decreased (p <0.05). In addition, L. reuteri did not show any invasion effect and is safe for human health.
URI: http://hdl.handle.net/11455/51946
其他識別: U0005-1307201115375900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307201115375900
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.