Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5196
標題: 以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究
Study on the Preparation and Characterization of Activated Carbon Supported TiO2 Photocatalyst
作者: 洪雲傑
Horng, Yun-Jye
關鍵字: titanium Dioxide
二氧化鈦
Activated Carbon
Photocatalytic
活性碳
光催化
出版社: 環境工程學系所
引用: 參考文獻 申洋文、車雲霞,無機化學叢書,第八卷,鈦分類,北京:科學出版社 (1998)。 吳紀聖,光觸媒的原理與應用發展,科學月刊第三十四卷第八期,科學月刊雜誌社(2003) 胡振國譯,半導體元件-物理與技術,全華圖書公司 (1989)。 高濂、鄭珊、張青紅著,奈米光觸媒,五南圖書公司(2004)。 陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。 張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。 葉志揚,以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定,碩士論文,國立台灣大學化學工程研究所(1999)。 謝芳生、劉濱達譯,微電子學,東華書局 (1986)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所 (2000)。 Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene”, Environmental Science & Technology, Vol. 31, pp. 1898-1901 (1997)。 Araña, J., J. M. Dofia-Rodriguez, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon and J. A. Navio, “TiO2 activeation by using activated carbon al a support Part I. Surface characterization and decantability study”, Applied Catalysis B: Environmental, Vol. 44, pp. 161-172(2003)。 Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles”, Chemosphere, Vol. 14, No. 2, pp. 195-208 (1985)。 Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez and W. Estrada, “Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon”, Journal of Molecular Catalysis A:Chemical, Vol. 228, pp. 293-298(2005)。 Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?”, Journal of Catalysis, Vol. 66, pp. 383-390 (1980)。 Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2”, Ph. D. Dissertation, Arizona State Univ. (1989)。 Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams”, Environmental Science & Technology, Vol. 26, pp. 492 -500(1992)。 Doede, C. M. and C. A. Walker, “Photochemical Engineering”, Chemical Engineering, Vol. 62, No. 2 , pp. 159-178 (1955)。 Finklea, H. O., “Semiconductor Electrode”, Elsevier Press, New York (1988)。 Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis”, Chemical Reviews, Vol. 93, pp. 341-350 (1993)。 Fu, P., Y. Luan and X. Dai, “Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity”, Journal of Molecular Catalysis A:Chemical, Vol. 221, pp. 81-88(2004)。 Gao, Y. and H. Liu, “Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film”, Materials Chemistry and Physics, Vol. 92, pp. 604-608(2005)。 Gratzel, M., Energy :Resources through Photochemistry and Catalysis,Acadamic Press lnc (1983)。 Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, Environmental Science & Technology, Vol. 31, pp. 562 -568(1997)。 Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chemical Reviews, Vol. 93, pp. 267-269 (1993)。 Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand”, Environmental Science & Technology, Vol. 24, pp. 798-806 (1988)。 Legan, R. W., “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January, pp. 95 -99(1982)。 Levenspiel, O., “Chemical Reaction Engineering”, New York (1972)。 Li, Y., X. Li, J. Li and J. Yin, “Photocatalytic Degradation of Methyl Orange by TiO2-Coated Activated Carbon and Kinetic Study”, Water Research, Vol. 40, pp. 1119-1126 (2006)。 Livage, J., S. Doeuff, M. Henry and C. Sanchez, “Hydrolysis of titanium alkoxides:Modification of the molecular precursor by acetic acid”, J. Non-cryst. Solids, Vol. 89, pp. 206-216(1987)。 Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry”, Macmillan Publishing Co. Inc., New York, p. 720 (1974)。 O11is, D. F., E. Pelizzetti, and N. Serpone,“Destruction of Water Contaminants”, Environmental Science & Technology, Vol. 25, No. 9 (1991)。 Peral, J. and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, Journal of Catalysis, Vol. 136, pp. 554-565 (1992)。 Phadke, M. S., “Quality Engineering Using Robust Design.”, Prentice Hall, p. 291 (1989)。 Prengle, H. W. and C. E. Mauk,“New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection”, AIChE Symposium Series, Vol. 74, No. 178, pp. 228-244 (1978)。 Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide”, Journal of Catalysis, Vol. 149, pp. 189-194 (1994)。 Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry B, pp. 829-832 (1990)。 Suri, R. P. S., J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water.”, Water Environment Research, Vol. 65, No. 5, pp. 665-669 (1993)。 Terabe, K. K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, “Microstructure and crystallization behaviour of TiO2 Precursor prepared by the sol-gel method using metal alkoxide”, J. Mater. Sci., Vol. 29, pp. 1617-1622(1994)。 Texier, I., J. Ouazzani, J. Delaire, and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32 Tetrahedron”, Vol. 55, Issue. 11, pp. 3401-3412 (1999)。 Torimoto, T., Y. Okawa, N. Takeda and H. Yoneyama, “Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane”, Journal of Photochemistry and Pohotbiology A:Chemistry, Vol. 103, pp. 153-157(1997)。 Tryba, B., A. W. Morawski and M. Inagaki, “Application of TiO2-mounted activated carbon to the removal of phenol from water”, Applied Catalysis B: Environmental, Vol. 41, pp. 427-433(2003)。 Turner, J.C.R.,”An introduction to the theory of catalytic reactors”, Catalysis Science and Technology, Vol. 1, pp. 43-86 (1981)。 Turro, N. J., “Molecular Photochemistry”, Columbia University, N. Y. p. 1 (1965)。 Yuan, R., J. Zheng, R. Guan and Y. Zhao, “Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers”, Colloids and Surface A:Physicoche. Eng.. Aspects, Vol. 254, pp. 131-136(2005)。 Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters”, Environmental Science & Technology, Vol. 18, No. 12, pp. 358A -371A(1984)。 Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environmental Science & Technology, Vol. 22, No. 3, pp. 256 -259(1988)。 Zhang, X., M. Zhou and L. Lei, “Preparation of an Ag-TiO2 Photocatalyst coated on activated carbon by MOCVD.” Materials Chemistry and Physics, Vol. 91, pp. 73-79 (2005)。
摘要: 本研究是探討以活性碳(AC)擔持TiO2光觸媒的製備方式及其特性。TiO2的來源是經由Sol-Gel法的製備,並採用實驗計劃法找到其最佳製備條件,而TiO2/AC之複合式觸媒,則是由方法I及方法II兩種披覆方式搭配PAC及GAC兩種活性碳所組合而成。 實驗結果顯示,將TTIP、IPA及HAc之莫耳數比控制在1:2:8,並且經過500 ℃鍛燒90 min後,可得到光催化活性最佳之TiO2光觸媒,而且利用方法II將TiO2光觸媒披覆在PAC上的組合,是方便且較佳的選擇。 由SEM、ESCA、XRD等表面分析結果可知,TiO2顆粒的大小約為17 nm,結晶構造為Anatase晶型,而且當其披覆在AC上後,並不會對TiO2光觸媒的特性造成改變,但是經由光催化實驗及觸媒沈降實驗證實,TiO2/AC之複合式觸媒可提升15%~20%之沈降效果,並且促進光催化反應之進行。從動力分析的結果得知,TiO2/AC之複合式觸媒於光催化反應的系統中,是較符合階數變動之反應模式,且由擬一階反應速率之比較可知,當PAC在複合式觸媒中所佔的比例在4%以上時,對TiO2的光催化反應速率是有增加的。
This investigation aimed at the preparation and characteristics of activated carbon supported TiO2 photocatalyst. TiO2 photocatalyst was prepared by Sol-Gel method, together with Taguchi method in order to find the optimum preparing parameters. In addition, TiO2/AC was prepared by method I and II with PAC and GAC. The experiment results indicated that TiO2 photocatalyst could show the best photocatalytic activity, when TTIP, IPA and HAc were mixed in the molar ratio of 1: 2: 8, and calcined at 500℃ for 90 minutes. Furthermore, using PAC supported TiO2 photocatalyst by means of method II would be a more convenient and better choice. From the external analysis of SEM, ESCA and XRD, the results showed that the grain size of TiO2 was about 17 nm and mainly anatase structure. Then, after AC was coated with TiO2, the characteristics of TiO2 photocatalyst were not altered either. However, through the experiment results of photocatalytic reaction and catalyst subsiding, it was suggested that TiO2/AC made the subsiding increase 15~20 percent in effect and promoted the photocatalytic reaction. According to the kinetic analysis, TiO2/AC in the system of photocatalytic reaction conformed more to the reaction model of order-changes. Besides, in comparison with the pseudo first-order reaction rate constant, it showed that photocatalytic reaction rate would be increased, when the ratio of PAC in catalyst was more than 4 percent.
URI: http://hdl.handle.net/11455/5196
其他識別: U0005-2106200617091700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2106200617091700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.