Please use this identifier to cite or link to this item:
標題: 不同光源照射發芽糙米抗氧化酵素和機能性物質之探討
Studies on the Antioxidant Defense Activity and Functional Substances Induced during Short-Time Germinated Brown Rice by Two Sources of Light
作者: 王文美
Wang, Wen-Meei
關鍵字: germination
far infrared rays (FIR)
antioxidative enzyme
non-enzymatic antioxidants
functional substances
出版社: 食品暨應用生物科技學系所
引用: 王文美、盧訓、許煥祺。2006。不同光源照射發芽糙米之理化特性及抗氧化活性之比較。中華農學會報7(3):296-310。 朱礸英。2002。富含γ-胺基丁酸發芽糙米之研製。國立嘉義大學食品科學系碩士論文。 汪呈因。1983。稻作學與米。徐氏基金會,台中。 宋妤。1998。種子發芽水分生理。台灣之糧苗。42:24-27。 宋勳、許愛娜、洪梅珠。1988。台灣主要水稻推廣品種之品質與分級。台中區農業改良場研究報告,第0169號。 何明桹。1984。台灣發展米糠油工業可行性之研究。先鋒企業管理發展中心出版。台北。 何榮祥。1987。正確有效的使用乾燥機確保稻米品質。台中區農推專訊 66:13-15. 李平篤、李門輝。1993。水稻種子發芽發育過程中醣代謝相關酵素活性之變化。中國農業化學會誌 31:265-273。 李謨中、黃克穠、王金松、楊明興。2000。遠紅外線的基本特性及引發的生理反應。筧橋學報7:60-62。 林儒宏。2003。萌爆處理過程中脫水速率對苦瓜種子品質及抗氧化反應之影響。國立中興大學農藝學系碩士論文。 邱添輝。1998。遠紅外線加熱的理論與實務。文笙書局。 邱凱瑩。2000。萌爆處理後之超甜玉米種子耐貯性研究。國立中興大學農藝系博士論文。 胡長達。2003。經不同方式發芽之糙米其化學組成成分、理化特性與抗氧化活性之探討。國立中興大學食品科學系碩士論文。 高景輝、湯文通。1977。種子的生理。科學農業25(5/6):165-169。 許天飛。1997。遠紅外線的效用及其評估法。染化雜誌150:59-63。 許煥祺。2005。糙米受不同光源照射發芽後其理化特性及抗氧化活性之探討。國立中興大學食品科學系碩士論文。 陳顗名。2002。稻米貯藏期間氧化狀態之變化。國立中興大學農藝學系碩士論文。 傅偉祥。2001。利用米糠開發含營養及具機能性之食品配料。國立台灣大學食品科技研究所博士論文。 雷少平。1980。米糠油中米糠醇與烏腳病之膳食治療之研究。國立台灣大學農業化學研究所碩士論文。 張正賢。1988。。稻作學精要。國立編譯館主編。茂昌圖書有限公司發行。 盧訓。1992。穀類科學與加工。P.92。國立中興大學,台中市。 盧訓。2000。鄉間小路。養生飲食集-五穀篇。PP.42-44。 劉英德。1988。種子生理。五洲出版社。台北。PP.76-185, PP.344-436。 蔡錢應。2005。遠紅外線功效與應用技術。遠紅外線報告書。祥大科技股份有限公司。 大久長範、菅原真理、阿部雪子、熊谷昌則、高橋砂織。2000。胚芽米と鶏スープによるγ-アミノ酪酸の生成。日本食品科学工学会誌47:452-454。 大海淳。2003。21世紀生機主食發芽米。培根文化出版社。台北。 橫田哲治。2001。マグマ米の魅力を探る!。食の科学275:94-97。 Adom, K. K. and Liu, R. H. 2002. Antioxidant activity of grains. J. Agric. Food Chem. 50:6182-6187. Akama, K., Akihiro, T., Kitagawa, M., and Takaiwa, F. 2001. Rice (Oryza astiva) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochimica et Biophysica Acta. 1522:143-150. Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological sample. Methods Enzymol. 113:548-555. Asada, K. 1992. Ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85:235-241. Bailly, C., Benamar, A., Corbineau, F., and Come, D. 1998. Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol. Plant. 104:646-652. Bailly, C., Corineau, F., and Van Doorn, W. G. 2001. Free radical scavenging and senescence in Iris tepals. Plant Physiol. Biochem. 39:649-656. Baublis, A., Decker, E. A., and Clydesdale, F. M. 2000. Antioxidant effect of aqueous extracts from wheat based ready-to-eat breakfast cereals. Food Chem. 68:1-6. Bautista, G. M., Lugay, J. C., Cauz, L. J., and Juliano, B. O. 1964. Glutamic acid decarboxylase activity as a viability index of artificially dried and stored rice. Cereal Chem. 41:188-191. Bewley, J. D. 1997. Seed germination and dormancy. The Plant Cell. 9:1055-1066. Chen, C. C. and Sung, J. M. 2001. Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol. Plant. 111:9-16. Chen, Q. C. 2004. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography. J. Agric. Food Chem. 52:4604-4613. Chiu, K. Y., Chen, C. L., and Sung, J. M. 2003. Partial vacuum storage improves the longevity of primed sh-2 sweet corn seeds. Sci. Hort. 98:99-111. Cholewa, E., Cholewinski, A. J., Shelp, B. J., Snedden, W. A., and Bown, A. W. 1997. Cold-shock-stimulated gamma-amino butyric acid synthesis is mediated by an increase Ca2+, not by an increase in cytosolic H+. Can. J. Bot. 75:375-382. Choudhuri, N. and Basu, R. N. 1988. Maintenance of seed vigor and viability of onion (Allium cepa L.). Seed Sci. Technol. 16:51-61. Coccetta, R. A., Croft, K. D., Beilin, L. J., and Puddey, I. B. 2000. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr. 71:67-74. De Gara, L., Paciolla, C., De Tullio, M. C., Motto, M., and Arrigoni, O. 2000. Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol. Plant. 109:7-13. Empson, K. L., Labuza, T. P., and Graf, E. 1991. Phytic acid as a food antioxidant. J. Food Sci. 56:560-563. Fahey, R. C., Di Stefano, D. L., Meier, G. P., and Bryan, R. N. 1980. Role of hydration state and thiol-disulfide state in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiol. 65:1062-1066. Foster, J. G. and Hess, J. L. 1980. Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to and atmosphere enriched in oxygen. Plant Physiol. 66:482-487. Foyer, C. H. and Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbate acid metabolism. Planta 133:21-25. Foyer, C. H., Lelandais, M., and Kunert, K. J. 1994. Photooxidative stress in plants. Physiol. Plant. 92:696-717. Graf, E. 1983. Applications of phytic acids. JAOCS. 60:1861-1868. Grases, F. and Costa-Bauza, A. 1999. Phytate (IP6) is a powerful agent for preventing calcification in biological fluids: usefulness in renal lithiasis treatment. Anticancer Res. 19:3717-3722. Griffith, O. W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207-212. Gutteridge, J. M. C. and Halliwell, B. 1994. Antioxidants in Nutrition, Health, and Disease. Oxford University Press, Inc., New York. Harland, B. F. and Morris, E. R. 1995. Phytate: a good or a bad food component? Nutr. Res. 15(5):733-754. Haugh, W. and Lantzsch, H. J. 1983. Sensitive method for the rapid determination of phytate in cereal products. J. Sci. Food Agric. 34:1423-1426. Hendry, G. A. F. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3:141-153. Hickenbottom, J. W. 1996. Processing, types, and uses of barley malt extracts and syrups. Cereal Food World 41(10):788-790. Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stochiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. Kader, A. A. 1987. Respiration and gas exchange of vegetables. In: Postharvest Physiology of Vegetables (Weichmann, J., ed.), Marcel Dekker, Inc., New York. Kahlon, T. S., Chow, F. I., Chiu, M. M., Hudson, C. A., and Sayer, R. N. 1996. Cholesterol-lowering by rice bran and rice bran oil unsaponifiable matter in hamsters. Cereal Chem. 73(1):69. Kandaswami, C., and Middleton, E. 1994. Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366:351-376. Kato, M. and Shimizu, S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735. Kikunaga, S., Katoh, Y., and Takahashi, M. 1991. Biochemical change in phosphorus compounds and in the activity of phytase and α-amylase in the rice (Oryza sativa) grain during germinateon. J. Sci. Food Agric. 56:335-343. Kinefuchi, M., Sekiya, M. Yamazaki, A., and Yamamoto, K. 1999. Accumulation of GABA in brown rice by high pressure treatment. Nippon Shokuhin Kagaku Kogaku Kaishi. 46(5):323-328. Kranner, I. and Grill, D. 1993. Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiol. Plant. 88:557-562. Law, M. Y., Charles, S. A., and Halliwell, B. 1983. Glutathione and ascorbic acid in spinach (Spinacia olerocea) chloroplasts. Biochem. J. 210:899-903. Lehrfeld, J. 1989. High-performance liquid chromatography analysis of phytic acid on a pH-stable, macroporous polymer column. Cereal Chem. 66(6):510-515. Leprince, O., Deltour, R., Thorpe, P. C., Atherton, N. M., and Hendry, G. A. F. 1990. The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytol. 116:573-580. Leprince, O., Vertucci, C. W., Hendry, G. A. F., and Atherton, N. M. 1995. The expression of desiccation-induced damage in orthodox seeds is a function of oxygen and temperature. Physiol. Plant. 94:233-240. Lin, R. H., Chen, K. Y., Chen, C. L., Chen, J. J., and Sung, J. M. 2005. Slow post-hydration drying improves initial quality but reduces longevity of primed bitter gourd seeds. Sci. Hort. 106:114-124. Loewus, F. A. and Murthy, P. P. N. 2000. myo-Inositol metabolism in plant. Plant Sci.150:1-19. Lorenz, K. 1980. Cereal sprouts: composition, nutritive value, food applications. Crit. Rev. Food Sci. Nutr. 12:353-385. MacAdam, J. W., Nelson, C. J., and Sharp, R. E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol. 99:872-878. Maillard, M.-N., Soum, M.-H., Boivin, P., and Berset, C. 1996. Antioxidant activity of barley and malt: Relationship with phenolic content. Lebensem.-wiss. u.-technol. 29:238-244. Marero, L. M., Payumo, E. M., Aguinnaldo, A. R., Matsumoto, I., and Homma, S. 1991. Antinutritional factors in wearning foods prepared from germinated cereals and legumes. Lebensm. Wiss. U. Technol. 24:177-181. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorvate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880. Noctor, G. and Foyer, C. H. 1998 Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249-249. Ohisa, N., Sugawara, M., Abe, Y., Kumagai, M., and Takahashi, S. 2000. Accumulation of gamma-aminobutyric acid by rice with germs and chicken soup. Nippon Shokuhin Kagaku Kogaku Kaishi. 47(6):452-454. Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., and Takahashi, T. 2000. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi. 47(8):596-603. Paoletti, F., Aldinucci, D., Mocali, A., and Capparini, A. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536-541. Parera, C. A. and Cantliffe, D. J. 1994. Dehydration rate after solid matrix priming alters seed performance of shrunken-2 corn. J. Amer. Soc. Hort. Sci. 119:629-635. Parera, C. A. and Cantliffe, D. J. 1996. Presowing seed priming. Horti. Rev. 16:109-141. Pell, E. J., Schlagnhaufer, D. C., and Arteca, R. N. 1997. Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol. Plant. 100:264-273. Pietta, P., Simonetti, P., and Mauri, P. 1998. Antioxidant activity of selected medicinal plants. J. Agric. Food Chem. 46:4487-4490. Puntarulo, S., Galleano, M., Sanchez, R. A., and Boveris, A. 1991. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochem. Biophys. Acta. 1074:277-283. Rauser, W. E., Schupp, R., and Rennenberg, H. 1991. Cysteine, g-glutamy cysteine, and glutathione levels in maize seedlings. Plant Physiol. 97:128-138. Rudrupal, D. and Nakamura, S. 1988. The effect of hydration-dehydration pretreatments on eggplant and radish seed viability and vigor. Seed Sci. Technol.16:123-130. SAS Institute. SAS User’s Guide 8.1. Statistical Analysis System, SAS Institute, Cary, NC. Sagisaka, S. 1976. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol. 57:308-309. Sandberg, A.-S. and Ahderinne, R. 1986. HPLC method for determination of inositol tri-, tetra-, penta-, and hexaphosphates in foods and intestinal contents. J. Food Sci. 51(3):547-550. Schmidt, A. and Kunert, K. J. 1986. Lipid peroxidation in higher plants: the role of glutathione reductase. Plant Physiol. 82:700-702. Senaratna, T. and McKersie, B. D. 1983. Dehydration injury in germinating soybean (Glycine max L. Merr.) seed. Plant Physiol. 72:620-624. Senaratna, T., McKersie, B. D., and Stinson, R. H. 1985. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 78:168-171. Sharma, R. D., and Rukmini, C. 1986. Rice bran oil and hypocholesterolemia in rats. Lipid. 21: 715-723. Shelp, B. J., Bown, A. W., and McLean, M. D. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4(11):446-452. Shin, T. S., Godber, J. S., Martin, D. E., and Wells, J. H. 1997. Hydrolytic stability and changes in vitamins and oryzanol of extruded rice bran during storage. J. Food Sci. 62(4):704-708. Sugano, M., and Tsuji, E. 1997. Rice bran olil and cholesterol metabolism. J. nutr. 127:521-524. Sung, J. M. and Chiu, K. Y. 1995. Hydration effect on seedling emergence strength of watermelon seeds differing in ploidy. Plant Sci. 110:21-26. Taga, M. S., Miller, E. E., and Pratt, D. E. 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oli. Chem. Soc. 61:928-931. Thompson, L. U., Button, C. L., and Jenkins, D. J. 1987. Phytic acid and calcium effect on starch digestibility and glycemic response to navy bean flour. Am. J. Clin. Nutr. 46:467-473. Tommasi, F., Paciolla, C., de Pinto, M. C., and de Gara, L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J. Exp. Bot. 52:1447-1454. Wang, H. Y., Chen, C. L., and Sung, J. M. 2003. Both warm water soaking and matriconditioning treatments enhance anti-oxidation of bitter gourd seeds germinated at sub-optimal temperature. Seed Sci. Technol. 31:47-56. Welbaum, G. E., Shen, Z., Oluoch, M. O., and Jett, L. W. 1998. The evolution and effects of priming vegetable seeds. Seed Technol. 20:209-235.
摘要: 發芽糙米具有提升人體免疫恢復力及改善老人痴呆等生理功能、又含inosital、oryzanol、GABA及可預防抗酸性物質等,可作為良好之保健食品原料。吾人瞭解如SOD、CAT、APX、GR & DHAR等過氧化清除酵素(酶) 及非酵素性的抗氧化物質,如glutathione及ascorbic acid等等,可為植物體內化解或抑制自由基及過氧化物形成的防禦系統。這些酵素和抗氧化物質透過ascorbate-glutathione cycle的連結來進行清除自由基的工作。有“生命線”之稱的遠紅外線波長範圍4~16微米間對人類的生存與萬物的生長都極為重要。目前稉米仍是國人偏好米種,然台中秈10號長粒型米,是目前與稉米相近之最好吃的秈稻良質米品種。本研究以省產良質米台中秈10號(TCS10)及台稉8號 (TK8) 糙米為製備發芽糙米之原料。將糙米置於25℃生長箱中,分別以一般日光燈光(NL)或遠紅外線光(FIR,8~12微米)照射15, 18或21小時後,將發芽糙米給予三種處理:發芽後之濕發芽糙米直接冷凍(-81℃)貯藏、經冷凍乾燥和低溫乾燥兩種回乾處理後再行冷凍(-81℃)貯藏備用,藉以探討和比較不同品種及不同燈照處理發芽糙米抗氧化防禦系統(酵素活性)、機能性物質及回乾處理方式的變化情形。由結果顯示,以FIR照射發芽之胚芽突出較一般光源照射處理組為顯著,且浸潤時間較短,表示FIR照射處理較NL照射可促使糙米提前發芽。經短時間之發芽處理提升了糙米抗氧化酵素活性、抗氧化能力及機能性物質含量;且經由與清除過氧化物相關酵素活性的被誘導出來,糙米內過氧化物也逐漸被清除,以FIR燈照者均較 NL燈照發芽顯著。台中秈10號發芽糙米也顯示出比台稉8號發芽糙米有著更高的抗氧化酵素活性、抗氧化能力及機能性物質含量。而經低溫乾燥處理之發芽糙米酵素活性較凍乾處理高。是以,在本試驗TCS10 和 TK8發芽糙米預實驗結果發現浸潤處理誘導提昇了糙米之抗氧化酵素活性、抗氧化物含量、抗氧化能力和機能性物質含量,顯示可提高糙米之保健功能。TCS10糙米經18小時短時間之發芽處理提升了糙米抗氧化酵素活性及抗氧化能力,顯示選擇適當之稻米品種,如TCS10作為發芽米應是恰當的。在以FIR(8~12μm)照射下除可縮短發芽時間外,並較一般25℃燈照發芽有較好的酵素活性及抗氧化能力效果。同時,也發現FIR照射下波長的影響較溫度為大。機能性物質之GABA與肌醇三-六磷酸酯 (IP3-IP6) 含量因發芽而提昇。植酸經回乾處理後所下降之含量可能為肌醇五磷酸酯(IP5)之含量下降所致。 Ascorbic acid在糙米發芽處理之防禦系統ascorbate-glutathione cycle的連結中扮演著重要地位。
Two brown rice varieties, Taichung Sen 10 (TCS10, indica) and Taikeng 8 (TK8, japonica) were used as germination tested samples. The antioxidative enzyme activities (AEA), like as superoxide dismutase, catalase, glutathione reductase, ascorbate peroxidase, dehydroascorbate reductase, and total peroxidase etc, and the level of the non-enzymatic antioxidants, glutathione (GSH) and ascorbic acid (ASC), as well as the total antioxidant activity (TAA), Malondialdehyde (MDA), Total peroxide and the functional substances of γ-aminobutyric acid (GABA), oryzanol and inositol were all examined and then compared between two varieties of germinated brown rice (GBR) by two sources of light in this study. The effect of re-drying processes will also be evaluated. Germination process of the GBR was conducted for 15, 18, or 21 hr duration period respectively under either normal light (NL) or far infrared rays (FIR, 8-12μm) lightening in a growth chamber, the temperature of growth chamber was controlled at 25℃ ± 2℃. The slightly germinated brown rice (GBR) was then divided into three parts before stored in a -81℃ freezer for further uses: the first one is wet germinated brown rice without further treatment after germinateon; the second one is freeze-dried and the third one is room temperature dried. The data showed that the FIR treatments, when comparing with NL treatments, indeed enhance the germination processing to occur earlier. The resulting data also showed that the short time germinated brown rice possess greater activities of AEA, levels of antioxidant and contents of functional substances than those ungerminated control. The ungerminated control and GBR from TCS10 variety had a higher AEA (except catalase and MDA), GSH and ASC levels than those of TK8 variety. Germinated TCS10 samples also had a higher total antioxidant ability (ABTS) and GABA contents than those did of control and germinated TK8 ones. FIR lightening treated samples promoted better AEA, GSH and ASC levels, TAA and GABA contents than those produced by germination under normal light treated. The data further revealed that the way of room temperature dried had higher antioxidative enzyme activities than those freeze-dried. Thus, under the experiment conditions in this study, we concluded that germination process could induce and promote the antioxidative enzyme activities, the level of the non-enzymatic antioxidants, as well as the total antioxidant activity and the functional substances of brown rice. The short time germination process, especially lightening treated by FIR, enhanced the biochemical activity and result in improving the nutritional and physiological benefits of brown rice. The effect from its wave length may greater than the promoting temperature one. Taichung Sen 10 (TCS10, indica) variety could be another nice chosen as healthy GBR material. The contents of GABA and inositol phosphates (IP3-IP6) increased by the process of germination. Ascorbic acid should play an important role inside the ascorbate-glutathione cycle during the germinated brown rice process。
Appears in Collections:食品暨應用生物科技學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.