Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52027
標題: Characterization, Optimization of Xylanase Production from Aspergillus carneus M34 in Solid-State Fermentation and Its Application in Xylooligosaccharides Production.
Aspergillus carneus M34 聚木糖酶特性分析、最適化 固態發酵生產條件與其應用於木寡醣生產之探討
作者: 楊杰修
Yang, Chieh-Hsiu
關鍵字: Aspergillus carneus M34
Aspergillus carneus M34
Xylanase
Solid-state fermentation
Xylooligosaccharides
聚木糖酶固態發酵
木寡醣
出版社: 食品暨應用生物科技學系所
引用: [1]尤新。2001。機能性發酵製品。藝軒圖書出版社。 [2]方信裕。2007。Aspergillus carneus M34 聚木糖酶的生產、純化及其應用。國立中興大學食品暨應用生物科技學系 博士論文。 [3]林天枝,莊杉行。1995。茭白筍栽培技術改進研究。臺中區農業改良場研究彙報 47:1 – 9。 [4]林天枝,洪澨堂。1999。茭白筍早生品系園藝性狀之比較。臺中區農業改良場研究彙報 62:41 – 48。 [5]林天枝,洪澨堂。2000。茭白筍早生新品種 – 台中一號之育成。臺中區農業改良場研究彙報 66:37 – 56。 [6]洪哲穎與陳國誠。1992。回應曲面實驗設計法在微生物酵素生產上之應用。化工 39(2):3 – 18。 [7]邱永添。1998。茭白筍殼國畫紙之製造。國立中興大學森林學研究所 碩士論文。 [8]徐福建、陳洪章、李佐虎。2002。固態發酵工程研究進展。生物工程進展 22(1):44 – 48。 [9]陳清泉。1993。最適化實驗設計在食品工業產品開發上的應用。食品工業25(2):50 – 62。 [10]湯椀茹。2004。Aspergillus carneus M34 固態生產聚木糖酶之最適化條件及特性分析。國立中興大學食品科學系 碩士論文。 [11]廖佳瑋。2000。Aspergillus carneus M34 生產聚木糖酶最適化條件之探討。國立中興大學食品科學系 碩士論文。 [12]廖柏欽。2005。利用廉價基質以 Aspergillus carneus M34 之固態培養生產聚木糖酶及木寡醣之研究。國立中興大學食品科學系 碩士論文。 [13]楊盛行。2002。固態發酵在農工業上之應用。科學農業 50(1, 2):156 – 167。 [14]謝孟洲。2004。Aspergillus carneus M34 聚木糖酶與植酸酶同步生產之評估及聚木糖酶最適化最適化生產。國立中興大學食品科學系 碩士論文。 [15]羅國仁,余立文。2004。固態發酵製程的開發與應用。食品工業 36(10):2 – 10。 [16]Abdel-Sater M.A., El-Said A.H.M., 2001, Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes, International Bioderterioration & Biodegradation 47:15 – 21. [17]Bajpai P., 1999, Application of enzymes in the pulp and paper industry, Biotechnology Progress 15:147 – 157. [18]Bansod S., Dutta-Choudhury M., Srinivasan M., Rele M., 1993, Xylanase active at high pH from an alkalotolerant Cephalosporium species, Biotechnology Letters 15:965 – 970. [19]Bastawde K.B., 1992, Xylan structure, microbial xylanases, and their mode of action, World Journal of Microbiology and Biotechnology 8:353 – 368. [20]Beg Q.K., Kapoor M., Mahajan L., Hoondal G.S., 2001, Microbial xylanases and their industrial applications: a review, Applied Microbiology and Biotechnology 56:326 – 338. [21]Biely P., 1985, Microbial xylanolytic systems, Trends in Biotechnology 3:286 – 290. [22]Brillouet J.M., Joseleau J.P., 1987, Investigation of the structure of a heteroxylan from the outer pericarp of wheat kernel, Carbohydrate Research 159:109 – 126. [23]Brustovetskaya T.P., Okunev O.N., Shul’ga A.V., 1992, Formation and properties of fungal cellulose and xylanase in a liquid medium and in the conditions of solid-phase fermentation, Applied Biochemistry and Microbiology 27(4):438 – 443. [24]Canettieri E.V., de Moraes Rocha G.J., de Carvalho J.A. Jr., de Almeida e Silva J.B., 2007, Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology, Bioresource Technology 98:422 – 428. [25]Chang P., Tsai W.S., Tsai C.L., Tseng M.J., 2004, Cloning and characterization of two thermostable xylanase from an alkaliphilic Bacillus firmus, Biochemical and Biophysical Research Communications 319:1017 – 1025. [26]Christakopoulos P., Nerinckx W., Kekos D., Macris B., 1996, Claeyssens M. purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3, Journal of Biotechnology 51:181 – 189. [27]Christov L.P., Prior B.A., 1993, Esterases of xylan-degrading microorganism: properties, and significance, Enzyme and Microbial Technology 15:460 – 475. [28]Christov L.P., Szakacs G., Balakrishnan H., 1999, Production partial characterization and use of fungal cellulase free xylanase in pulp bleaching, Process Biochemistry 64:511 – 517. [29]Coelho G., Carmona E., 2003, Xylanolytic complex from Aspergillus giganteus: production and characterization, Journal of Basic Microbiology 43:269 – 277. [30]Collins T., Gerday C., Feller G., 2005, Xylanases, xylanase families and extremophilic xylanases, Federation of European Microbiological Societies Microbiology Reviews 29:3 – 23. [31]Coughlan M.P., Hazlewood G.P., 1993, β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications, Biotechnology and Applied Biochemistry 17:259 – 289. [32]Dekker R.F., Richards G.N., 1976, Hemicellulases: their occurrence, purification, properties and mode of action, Advances in Carbohydrate Chemistry and Biochemistry 32:277 – 352. [33]Dekker R.F.H., 1985, Biodegradtion of the Hemicellulose. In Biosynthesis and Biodegradtion of Wood Component. Higuchi, T., Academic press, Tokyo, Japan, p.505 – 553. [34]Dobrev G.T., Pishtiyski I.G., Stanchev V.S., Mircheva R., 2007, Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design, Bioresource Technology 98:2671 – 2678. [35]Durand A., Renaud R., Almanza S., Maratray J., Diez M., Desgranges, 1993, Solid-state fermentation reactors: from lab scale to pilot plant, Biotechnology Advances 11:591 – 597 [36]Dziezak J.D., 1990, Taking the gamble out of product development, Food Technology 44(6):110 – 117. [37]Fang H.Y., Chang S.M., Hsieh M.C., and Fang T.J., 2007, Production, optimization growth condition and properties of the xylanase from Aspergillus carneus M34. Journal of Molecular Catalysis B: Enzymatic 49:36 – 42. [38]Fang H.Y., Chang S.M., Lan C.H., and Fang T.J., 2007, Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochemistry 74:78 – 88. [39]Fernadez-Espinar M.T., Pinaga F., de Graaff L., Visser J.,Ramon D., Valles S., 1994, Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase, Applied Microbiology and Biotechnology 42:555 – 562. [40]Galas E., Bieleeki S., Antezak T., Weiczorek A., Blaszezyk, 1981. Optimization of cultivation medium composition for lytic enzyme biosynthesis. In Moo-Young M., Vezina C., Singh K. (Eds), Advances in Biotechnology-Proceedings 6th International Fermentation Symposium, Vol. 3, Pergamon Press, Canada, p.301 – 306. [41]Garrote G., Dominguez H., Parajo, Mild J.C., 1999, Autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood, Journal of Chemical Technology and Biotechnology 74:1101 – 1109. [42]Haltrich D.,Nidetzky B., Kulbe K.D., Steiner W., Zupancic, 1996, Production of fungal xylanase, Bioresource Technology 5(2):137 – 161. [43]Hata Y., Nakajima K., Hosono Y., Yamamoto M., 1989, Effects of soybean oligosaccharides on human digestive organs, Journal of Japanese Society of Clinical Nutrition 11(1):42 – 46. [44]Himmelblau D.M., 1970, Process analysis by statistical methods. John Wiley and Sons, New York, p.230 – 292. [45]Kulkarni N., Shendye A., Rao M., 1999, Molecularand biotechnological aspects of xylanase. Federation of European Microbiological Societies Microbiology Reviews 23:411 – 456. [46]Lenartovicz V., de Souza C., Moreira F., Peralta R., 2002, Temperature effect in the production of multiple xylanases by Aspergillus fumigatus, Journal of Basic Microbiology 42:388 – 395. [47]Lenartovicz V., Marques de Souza C.G., Moreira F.G., Peralta R.M., 2003, Temperature and carbon source affect the production and secretion of a thermostable β-xylosidase by Aspergillus fumigatus, Process Biochemistry 38:1775 – 1780. [48]Maddox I.S., Richert S.H., 1997, Use of response surface methodology for the rapid optimization of microbiological media, Journal of Applied Bacteriology 43:17 – 204. [49]Miller G.L., 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry 31:426 – 428. [50]Moo-Young M., Moreira A.R., Tengerdy R.P., 1983, Principles of solid state fermentation, in: Smith J.E., Berry D.R., Kristiansen B. (Eds), The Filamentous Fungi, Edward Arnold Publishers, London, England, p.117 – 144. [51]Morales P., Madarro A., Flor A., Sendra J.M., Prez–Gonzlez J.A., 1995, Purification and characterization of a xylanase and an arabinofuranosides form Bacillus polymyxa, Enzyme and Microbial Technology 17:424 – 429. [52]Okazaki M., Fugikawa S., Matsumoto N., 1990, Effects of xylooligosaccharide on growth of Bifidobacteria, Journal of Japanese Society of Nutrition and Food Science 43:395 – 401. [53]Okazaki M., Koda H., Izumi R., Fujikawa S., Matsumoto N., 1991, Effect of xylooligosaccharide on growth of intestinal bacteria and putrefaction products, Journal of Japanese Society of Nutrition and Food Science 44:41 – 44. [54]Pandey A., 1992, Recent process developments in solid-state fermentation, Process Biochemistry 27:109 – 117. [55]Pandey A., Azmi W., Singh J., Banerjee U.C., 1999, Types of fermentation and factors affecting it, in: Joshi V.K., Pandey (Eds), Biotechnology: Food Fermentation, Educational Publishers, New Delhi, India, p.383 – 426. [56]Pandey A., Selvakumar P., Soccol C.R., Nigam P., 1999, Solid state fermentation for the production of industrial enzymes, Current Science 77:149 – 162. [57]Poutanen K., Ratto M., Puls J., Viikari L., 1987, Evaluation of different microbial xylanolytic systems, Journal of Biotechnology 6:49 – 60. [58]Prade R.A., 1995, Xylanase: from biology to biotechnology. Biotechnology and Genetic Engineering Reviews 13:101 – 131. [59]Ralph B.J., Solid substrate fermentations, Food Technology in Australia 28:247 – 251. [60]Reilly P.J., 1981, Xylanase: structure and function, in “Trends in the Biology of Fermentation for Fuels and Chemicals.” Plenum publishing Corp., New York, USA, p.111 – 129. [61]Robinson T., McMullan G., Marchant R., Nigam P., 2001, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology 77:247 – 255. [62]Rodríguez Couto S., Sanromán MaA., 2005, Application of solid-state fermentation to ligninolytic enzyme production, Biochemical Engineering Journal 22:211 – 219. [63]Sato K., Sudo S., 1999, Small scale solid state fermentations, Manual of Industrial Microbiology and Biotechnology 2:61 – 63. [64]Silva E.M., Machucab A., Milagres A.M.F., 2005, Evaluating the growth and enzyme production from Lentinula edodes strains, Process Biochemistry 40:161 – 164. [65]Srinivasan M.C., Rele M.V., 1999, Microbial xylanase for paper industry, Current Science 77:137 – 142. [66]Subramaniyan S., 2000, Studies on the production of bacterial xylanases, Cochin University of Science and Technology, Cochin-22, Kerala, India, Ph. D. Dissertation. [67]Subramaniyan S., Prema P., 2002, Biotechnology of microbial xylanase: enzymology, Critical Reviews in Biotechnology 22:33 – 64 [68]Sun A., Cheng J., 2002, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology 83:1 – 11. [69]Torronen A., Mach R.L., Messner R., Gonzalez R., Kalkkinen N., Harkki A., Kubicek C.P., 1992, The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes, Biotechnology 10(11):1461 – 1465. [70]Tomomatsu H., 1994, Health Effects of Oligosaccharides: Ingestion of oligosaccharides increases the Bifidobacteria population in the colon, which in turn contributes to human health in many ways, Food Technology 48(10):61 – 65. [71]Yuan X., Wang J., Yao H., Venant N., 2005, Separation and identification of endoxylanases from Bacillus subtilis and their actions on wheat bran insoluble dietary fiber, Process Biochemistry 40:2339 – 2343. [72]Vazquez M.J., Alonso J.L., Dominguez H., Parajo J.C., 2000, Xylooligosaccharides: manufacture and application, Trend in Food Science and Technology 11:387 – 393. [73]Viniegra – Gonzalez G., Favela – Torres E., Aguilar C.N., de Jesus Romero – Gomez S., Diaz – Godinez G., Augur C., 2003, Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochemical Engineering Journal 13:157 – 167. [74]Virupakshi S., Gireesh B.K., Gaikwad S.R., Naik G.R., 2005, Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation, Process Biochemistry 40:431 – 435. [75]Wong K.K.Y., Tan L.U.L., Saddler J.N., 1988, Multiplicity of β-1,4-xylanase in microorganisms: functions and applications, Microbiology Reviews 52:305 – 317. [76]Wong K.K.Y., Saddler J.N., 1993, Applications of hemicellulases in the food, feed, pulp and paper industries. In: Coughlan M.P., Hazlewood G.P. (Eds) Hemicelluloses and hemicellulases. Portland Press, London, p.127 – 143. [77]Woodward J., 1984, Xylanase functions. Topics in Enzyme and Fermentation Biotechnology 8:9 – 30. [78]Wu Yuben B.,Velmurugu R., 2004, Influence of whole wheat inclusion and xylanase supplementation on the performance, digestive tract measurements and carcass characteristics of broiler chickens, Animal Feed Science and Technology 166:129 – 139. [79]Xu Z.H., Bail Y.L., Xul X., Shil J.S., Tao W.Y., 2005, Production of alkali-tolerant cellulose-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate, World Journal of Microbiology and Biotechnology 21:575 – 581.
摘要: 本研究乃利用本實驗室自土壤中篩選出具有聚木糖酶活性之Aspergillus carneus M34,以茭白筍殼與玉米浸漬液作為固態發酵主要基質,探討生產聚木糖酶之較適條件,並找出較適粗酵素液之萃取條件,進而探討酵素特性。此外,本研究利用此粗酵素液降解茭白筍殼半纖維素,以評估生產木寡醣之可能性。 實驗結果顯示,以A. carneus M34發酵茭白筍殼以固態發酵進行效果較佳。單一因子試驗中,較適生產聚木糖酶之培養條件如下:接種量為106 spores g-wm-1,培養溫度為25℃,培養基起始pH值為pH 8.0。藉由中心混成設計及反應曲面法之探討後,最適化培養條件為培養溫度25.6℃,培養基起始pH值為pH 7.96,預估聚木糖酶活性可達 6,781 U g-dm-1,較未最適化培養條件所能產生 1,721 U g-dm-1,可增加 3.9 倍。萃取粗酵素液之較適萃取條件如下:萃取溫度 25℃、萃取時間 1 小時、萃取溶液 pH 值為 pH 5.0 ~ 6.0、萃取溶液 Tween 80濃度 0.1%。 於利用本實驗生產之聚木糖酶降解茭白筍殼半纖維素試驗中,其最適作用 pH 值為 pH 5.0、最適作用溫度為 50 ~ 60℃,酵素在 pH 4.0~6.0 穩定性較佳,且於 50℃下作用 70 分鐘分鐘後,仍有 80% 以上之聚木糖酶活性。分析其水解產物中,含有木二糖、木三糖及木四糖等寡醣。預估每公斤之茭白筍殼所能產生之木寡醣量為(酵素作用時間 30 min):木二糖 61 g;木三糖 11 g;木四糖 22 g。
Xylanase production strain, Aspergillus carneus M34, which was isolated from soil by our laboratory, was used to study the growth condition for optimal xylanase production, extraction methods and enzyme characterization by solid state fermentation used coba husk and corn steep liquor for the medium. In addition, possibility of the crude enzyme degrading coba husk hemicellulose to produce xylooligosaccharides was evaluated. Solid-state was the better fermentation type to ferment coba husk for xylanase production of Aspergillus carneus M34. In one factor test, the better cultivation conditions as follows: inoculums size 106 spores g-wm-1, cultivation temperature 25℃, initial pH value of medium pH 8.0. For optimization of the cultivation conditions, central composite design and response surface methodology were practiced. The optimal cultivation conditions were 25.6℃ of cultivation temperature, initial pH value of medium pH 7.96, the predicted maximum xylanase activity under optimal conditions was 6,781 U gdm-1. This represented 3.9-fold gain in xylanase activity. The better extraction conditions as follows: extraction temperature 25℃, extraction time 1 hour, pH of extractive pH 5.0 ~ 6.0, Tween 80 concentration of extraction solution 0.1%. The test of crude enzyme degradation of coba husk hemicellulose. The optimal pH and temperature were pH 5.0 and 50 ~ 60℃, respectively. It also exhibited a good pH stability at range of pH 4.0 to 7.0. In respect to thermostability, the residual activity of xylanase activity was 80% at 50℃ for 70 min. The crude enzyme hydrolyzed product contented xylooligosaccharides. The predicted xylooligosaccharides yield pre kg coba husk were xylobiose 61 g, xylotriose 11 g and xylotetraose 22 g under 30 min reaction.
URI: http://hdl.handle.net/11455/52027
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.