Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52037
標題: 人參微脂體減緩過氧化氫對細胞氧化傷害之評估與黃連及小檗鹼微脂體抗人類肝癌細胞之效能分析
Reduction of hydrogen peroxide-induced oxidative damage by ginseng liposomal nanovesicles; anticancer effects on human hepatocellular carcinoma by huanglian and berberine liposomal nanovesicles
作者: Yu, Ming-Chiang
尤明強
關鍵字: liposome
微脂體
ginseng
huanglian
ginseng liposome
berberine liposome
huanglian liposome
黃連
人參
人參微脂體
小檗鹼微脂體
黃連微脂體
出版社: 食品暨應用生物科技學系所
引用: 1. 中華中藥典。行政院衛生署,2004。 2. 中醫大百科全書。中國大百科全書出版社,p257,2002,台灣。 3. 顧觀光重輯:神農本草經。人民衛生出版社,1957。 4. 中國醫學科學院藥物研究所等:中藥志(第一冊)。人民衛生出版社,1979, 中華人民共和國。 5. 肖培根等人:人參的研究及栽培。淑馨出版社,1989。 6. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 1999, 58(11), pp 1685–1693. 7. Xin XJ, Zhong JJ, Wei DZ, Liu JW. Protection effect of 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells on hydrogen peroxide-induced cytotoxity of human umbilical cord vein endothelial cells in vitro. Process Biochemstry. 2005, pp 3202–3205. 8. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, Yuan CS. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol. 2006, 27, 532(3), pp 201–7. 9. Kang KS, Yamabe N, Kim HY, Okamoto T, Sei Y, Yokozawa T. Increase in the free radical scavenging activities of American ginseng by heat processing and its safety evaluation. J Ethnopharmacol. 2007, 113(2), pp 225–232. 10. Li J, Shi YJ, Xu BJ. Comparative study of the composition of TCM Radix notoginseng extract samples before and after acetylation with UV and ELSD detection. Beijing Da Xue Xue Bao. 2004, 36(6), pp 630–633. 11. Kim YH, Park KH, Rho HM. Transcriptional activation of the Cu, Zn-superoxide dismutase gene through the AP2 site by ginsenoside Rb2 extracted from a medicinal plant, Panax ginseng. J Biol Chem. 1996, 271(40), pp 24539–24543. 12. Kim YK, Guo Q, Packer L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology. 2002, 172(2), pp 149–56. 13. Yang ZG, Sun HX, Ye YP. Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers. 2006, 3(2), pp 187–197. 14. Lee TK, Allison RR, O''Brien KF, Khazanie PG, Johnke RM, Brown R, Bloch RM, Tate ML, Dobbs LJ, Kragel PJ. Ginseng reduces the micronuclei yield in lymphocytes after irradiation. Mutat Res. 2004, 557(1), pp 75–84. 15. Yuan QL, Yang CX, Xu P, Gao XQ, Deng L, Chen P, Sun ZL, Chen QY. Neuroprotective effects of ginsenoside Rb1 on transient cerebral ischemia in rats. Brain Res. 2007, 1167, pp 1–12. 16. Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res. 2009, 64(3), pp 306–310. 17. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull. 2002, 25(6), pp 743–747. 18. Liou CJ, Huang WC, Tseng J. Long-term oral administration of ginseng extract modulates humoral immune response and spleen cell functions. Am J Chin Med. 2005, 33(4), pp 651–661. 19. Wang M, Guilbert LJ, Li J, Wu Y, Pang P, Basu TK, Shan JJ. A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFN-gamma productions in murine spleen cells induced by Con-A. Int Immunopharmacol. 2004, 4(2), pp 311–335. 20. Lee TK, Johnke RM, Allison RR, O''Brien KF, Dobbs LJ Jr. Radioprotective potential of ginseng. Mutagenesis. 2005, 20(4), pp 237–243. 21. Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med. 2005, 33(3), pp 397–404. 22. Lee JY, Kim JW, Cho SD, Kim YH, Choi KJ, Joo WH, Cho YK, Moon JY. Protective effect of ginseng extract against apoptotic cell death induced by 2, 2'', 5, 5''-tetrachlorobiphenyl in neuronal SK-N-MC cells. Life Sci. 2004, 75(13), pp 1621–1634. 23. 舒華,向麗華。黃連藥理作用及臨床研究。甘肅中醫。2004,12,5–6。 24. 吳立軍:中藥化學,科技圖書出版社,2006。 25. 劉映麓,羅曉燕,尹春南。鹽酸黄連素的苦味包合研究。廣東藥學。1999,93(24),24–25。 26. Jean-Moreno V, Rojas R, Goyeneche D, Coombs GH, Walker J. Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp Parasitol. 2006, 112(1), pp 21–30. 27. Tsai CS, Ochillo RF. Pharmacological effects of berberine on the longitudinal muscle of the guinea-pig isolated ileum. Arch Int Pharmacodyn Ther. 1991, 310, pp 116–131. 28. Akhtar MH, Sabir M, Bhide NK. Anti-inflammatory effect of berberine in rats injected locally with cholera toxin. Indian J Med Res. 1977, 65(1), pp 133–141. 29. Park EK, Rhee HI, Jung HS, Ju SM, Lee YA, Lee SH, Hong SJ, Yang HI, Yoo MC, Kim KS. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother Res. 2007, 21(8), pp 746–750. 30. Liu JC, Chan P, Chen YJ, Tomlinson B, Hong SH, Cheng JT. The antihypertensive effect of the berberine derivative 6-protoberberine in spontaneously hypertensive rats. Pharmacology. 1999, 59(6), pp 283–289. 31. Shah BH, Nawaz Z, Saeed SA, Gilani AH. Agonist-dependent differential effects of berberine in human platelet aggregation. Phytother Res. 1998, 12, pp S60–S62. 32. Zhu B, Ahrens F. Antisecretory effects of berberine with morphine, clonidine, L-phenylephrine, yohimbine or neostigmine in pig jejunum. Eur J Pharmacol. 1983, 96(1–2), pp 11–19. 33. Riccioppo Neto F. Electropharmacological effects of berberine on canine cardiac Purkinje fibres and ventricular muscle and atrial muscle of the rabbit. Br J Pharmacol. 1993, 108(2), pp 534–537. 34. Wang YX, Zheng YM. Ionic mechanism responsible for prolongation of cardiac action-potential duration by berberine. J Cardiovasc Pharmacol. 1997, 30(2), pp 214–222. 35. Smaz Z, Desperak NA, Obojska K. Pharmacological investigation of the stimulation of bile flow by berberine sulfate. Dissertations Pharm. 1965, 17, pp 429–436. 36. Holy EW, Akhmedov A, Lüscher TF, Tanner FC. Berberine, a natural lipid-lowering drug, exerts prothrombotic effects on vascular cells. J Mol Cell Cardiol. 2009, 46(2), pp 234–240. 37. Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I, Flahaut S, Jabbouri S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents. 2009, 34(1), pp 60–66. 38. Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food. 2005, 8(4), pp 454–461. 39. Freile ML, Giannini F, Pucci G, Sturniolo A, Rodero L, Pucci O, Balzareti V, Enriz RD. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia. 2003, 74(7–8), pp 702–705. 40. Nakamoto K, Sadamori S, Hamada T. Effects of crude drugs and berberine hydrochloride on the activities of fungi. J Prosthet Dent. 1990, 64(6), pp 691–694 41. 中醫大百科全書。中國大百科全書出版社,p 134,2002。 42. Hayashi K, Minoda K, Nagaoka Y, Hayashi T, Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus.Bioorg. Med Chem Lett. 2007, 17(6), pp 1562–1564. 43. Hwang JM, Kuo HC, Tseng TH, Liu JY, Chu CY. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol. 2006, 80(2), pp 62–73. 44. Meeran SM, Katiyar S, Katiyar SK. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol. 2008, 229(1), pp 33–43. 45. Kim JB, Lee KM, Ko E, Han W, Lee JE, Shin I, Bae JY, Kim S, Noh DY. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231. Planta Med. 2008, 74(1), pp 39–42. 46. Piyanuch R, Sukhthankar M, Wandee G, Baek SJ. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 2007, 258(2), pp 230–240. 47. Hsu WH, Hsieh YS, Kuo HC, Teng CY, Huang HI, Wang CJ, Yang SF, Liou YS, Kuo WH. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol. 2007, 81(10), pp 719–728. 48. 唐發清。黃連及其複方對人鼻咽癌細胞殺傷動力學研究。湖南中醫學院學報。1995,15(4),41–44。 49. 賀玉琢。黃連含有生物堿的拓樸異構酶依存DNA切斷活性。國外醫學:中醫中藥分冊。1995,17(4),39。 50. 黃林清,徐傳福,周世文,張詩平,姚丹凡。小檗鹼抗腫瘤作用實驗研究。中國藥理學通報。1997,13(2),189 51. 張憲印,安麗華,邵智。黃連及其製品的不良反應和治療。時珍國醫國藥。 2003,14(11),714。 52. 認識常用中藥(二)。行政院衛生署中醫藥委員會,1999。 53. Key TJ, Allen NE, Spencer EA, Travis RC. The effect of diet on risk of cancer. Lancet. 2002, 360(9336), pp 861–868. 54. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004, 134(12 Suppl), pp 3479–3485. 55. McGuire WP, Hoskins WJ, Brady MF. A randomized trial of cyclophosphamide/cisplatin versus Paclitaxel/cisplatin in suboptimal stage III and IV ovarian cancer: a gynecologic oncology group study. N Engl J Med. 1996, 334, pp 1–6. 56. 薛玉英,翁幗英,何俊峰,徐斌。口服硫酸氫黃連素脂質體的研制。中國中藥雜誌。1995,20(12),730–731。 57. 劉衍興,郭輝。小檗鹼及其脂質體降血糖作用實驗研究。基層中藥雜誌。1999,13(1),18–19。 58. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965, 13(1), pp 238–522. 59. Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965, 13(1), pp 253–259. 60. Sessa G, Weissman G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res. 1968, 9(3), pp 310–318. 61. Gregoriadis G, Ryman BE. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem. 1972, 24(3), pp 485–491. 62. Vladimir T, Volkmar W. Liposomes a practical approach, 2nd edn. Oxford University Press, New York, 2003. 63. Katie A. Edwards, Antje JB. Liposomes in analyses. Talanta. 2006, 68, pp 1421–1431. 64. New RRC. Liposomes a practical approach, 1st edn. Oxford University Press, New York, 1990. 65. Rongen HA, Bult A, van Bennekom WP. Liposomes and immunoassays. J Immunol Methods. 1997, 204(2), pp 105–133. 66. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965, 13(1), pp 238–252. 67. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969, 8(1), pp 344–351. 68. Barenholtz Y, Amselem S, Lichtenberg D. A new method for preparation of phospholipid vesicles (liposomes)-French press. FEBS Lett. 1979, 99(1), pp 210–214. 69. Hamilton RL Jr, Goerke J, Guo LS, Williams MC, Havel RJ. Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique. J Lipid Res. 1980, 21(8), pp 981–992. 70. Pick U. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys. 1981, 212(1), pp 186–194. 71. Szoka F Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA. 1978, 75(9), pp 4194–4198. 72. Pagano RE, Takeichi M. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins. J Cell Biol. 1977, 74(20), pp 531–546. 73. Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature. 1980, 288, pp 602–604. 74. Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978, 542(2), pp 296–307. 75. Scherphof G, Van Leeuwen B, Wilschut J, Damen J. Exchange of phosphatidylcholine between small unilamellar liposomes and human plasma high-density lipoprotein involves exclusively the phospholipid in the outer monolayer of the liposomal membrane. Biochim Biophys Acta. 1983, 732(3), pp 595–599. 76. Allen TM. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim Biophys Acta. 1981, 640(2), pp 385–397. 77. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990, 1029(1), pp 91–97. 78. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977, 252(11), pp 3582–3586. 79. Wright AE, Douglas SR.An Experimental investigation of the role of the blood fluids in connection with phagocytosis. Proc R Soc Lond A Math Phys Sci. 1904, 72, pp 357–370. 80. Chu PT, Hsieh MF, Yin SY, Wen HW. Development of a rapid and sensitive immunomagnetic-bead based assay for detecting Bacillus cereus in milk. Eur Food Res Technol. 2009, 229(1), pp 73–81. 81. 台灣微脂體公司。http://www.taiwanlipo.com/products_ch.html. 82. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992, 40(6), pp 945–948. 83. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003, 24(7), pp 1121–1131. 84. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48(3), pp 589–601. 85. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005, 135(2), pp 117–29. 86. Moribe K, Maruyama K, Iwatsuru M. Encapsulation characteristics of nystatin in liposomes: effects of cholesterol and polyethylene glycol derivatives. Int J Pharm. 1999, 188(2), pp 193–202. 87. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994, 1195(1) pp 11–20. 88. Woodle MC. Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev. 1998, 32(1–2), pp139–152. 89. Yoshioka H. Surface modification of haemoglobin-containing liposomes with polyethylene glycol prevents liposome aggregation in blood plasma. Biomaterials. 1991, 12(9), pp 861–4. 90. 鄧意輝,王绍寧,吳瓊,萬芳,雷雪,王志鹏。主動載藥法製備鹽酸小檗鹼脂質體。中國藥學雜誌。2004,39(01),40–42。 91. 陳俊威,譚麗蓉,李偉恩,李國強。正交試驗法優選鹽酸小檗鹼脂質體製備工藝。實用醫技雜誌。2007,5(14),1868–1870。
摘要: 人參(ginseng)屬五加科(araliaceae)植物人參(Panax ginseng C.A. Mey.)之乾燥根莖,而黃連(huanglian)為毛茛科植物黃連(Coptis chinensis Franch.)之乾燥根莖,都是中國數千年的傳統中藥材。微脂體(liposome)因可包裹疏水性與親水性的藥物,為良好的藥物傳輸載體。 本研究目的第一部分是以微脂體包裹人參萃液,製備成人參微脂體,並評估其物性、化性、細胞安全性及抗氧化之能力。四種人參微脂體(PEG0.0、0.5、1.5與3.0)以15000 psi均質5分鐘可使粒徑下降至140~150 nm,而其中PEG3.0-liposome清除DPPH自由基能力(16%)與包裹人參皂苷含量最佳。在細胞安全性結果發現四種微脂體在濃度50、100與200 nmol/mL對L929細胞沒有抑制生長的現象,而L929在細胞量4×104與6×104 cells/mL分别以250及350 μM H2O2傷害後,存活率約為76%,但若加入50、100與200 nmol/mL濃度人參微脂體,相對於控制組(不加人參微脂體),都有減緩H2O2對L929細胞的氧化傷害,其中以100 nmol/mL的PEG3.0-liposome最具功效。 本研究第二部分以微脂體包裹小檗鹼與黃連萃液以形成小檗鹼與黃連微脂體,冀望經由製成微脂體新劑型後可以提高對肝癌細胞的殺害能力並降低對正常細胞的副作用。黃連粉萃出的小檗鹼量是未磨粉黃連塊的6.1倍,此外再以濃縮方式提高黃連水萃液的小檗鹼量至未磨粉黃連塊的26.4倍。因標準品小檗鹼對水的最大溶解度為1.5 mg/mL,嘗試用酸與鹼調整pH值以增加小檗鹼在水的溶解度,但是並無顯著差異。接著以微脂體包裹黃連水萃液與小檗鹼水溶液形成黃連與小檗鹼微脂體,經25000 psi均質20分鐘,黃連與小檗鹼微脂體粒徑約為140~150 nm,而包裹的小檗鹼含量分別為160.0 μg/mL與25.6 μg/mL。以小檗鹼水溶液與黃連水萃液對HepG2細胞做生長抑制試驗,其所相對應IC50值分别為48.0 μg/mL與39.0 μg/mL;而以小檗鹼微脂體與黃連微脂體對HepG2細胞做生長抑制試驗,其所相對應的IC50值則分别為1.3 μg/mL與9.0 μg/mL。故小檗鹼與黃連水萃液在經微脂體包裹後,其抗肝癌細胞生長的效率分別提升36.6與4.3倍,故本實驗證明微脂體可有效提升小檗鹼溶液與黃連水萃液的抗肝癌細胞生長的效果。
Ginseng and huanglian are traditional Chinese medicines and have been used for thousand years. The former is the root of Panax ginseng C.A. Mey, and the latter is the stem of Coptis chinensis Franch. Liposome is an excellent drug delivery vehicle which can encapsulate both hydrophilic and hydrophobic drugs, and has been used from the 1960s. Therefore, in this study, the extracts of ginseng and huanglian were encapsulated inside liposomes with a purpose to enhance their therapeutic effects. The first part of the project is to develop ginseng liposomes to improve the therapeutic effects of ginseng against the H2O2-induced oxidative damage to L929 cells. After determining the amounts of insenosides by HPLC, ginseng extract was encapsulated with various ratios of PEG (0, 0.5, 1.5, and 3 mol%). After homogenization at 15000 psi for 5 min, the sizes of those 4 batches of ginseng liposomes were all around 140-150 nm. Among them, PEG3.0 ginseng liposome had the highest scavenging ability of DPPH radicals (16%) and encapsulation efficiency of ginsenosides. In the cytotoxicity evaluation, different concentrations (50, 100, and 200 nmol/mL) of 4 batches of ginseng liposomes showed no inhibition on the growth of L929 cells. The survival rate of the L929 cells was about 76% after the H2O2 treatment. While ginseng liposomes were added to the H2O2-treated cells, the survival rates of the L929 cell had significant increase (5-50%), compared to the control group without the addition of ginseng liposomes. The increase of survival rates following the increase of PEG mol% on the liposomal surface. In addition, 100 nmol/mL of PEG3.0 ginseng liposome had the best efficiency in treating the oxidatively damaged L929 cells, and could also increase about 50% of cell survival rate. The second section of this study is to develop berberine and huanglian liposomes to improve the anti-hepatoma effects of huanglian and berberine. First, huanglian power and stalk were extracted in distilled water, and the extract of huanglian power had higher berberine concentration than the stalk. Furthermore, huanglian extract was concentrated by rotary evaporator to increase its berberine concentration. On the other hand, to increase the solubility of berberine standard (1.5 mg/mL in water), the pH values of berberine solution were modified with acids or bases. However, no significant improvement of berberine solubility was observed. After huanglian and berberine liposomes were homogenized at 25000 psi for 20 min, the average sizes of these batches of liposomes were 140-150 nm. Moreover, the encapsulated berberine concentrations of huanglian and berberine liposomes were 160.0 and 25.6 μg/mL, respectively. At the therapeutic test, the HepG2 cells were treated with either unencaosulated free form drugs (huanglian extract and berberine solution) or liposomal drugs (huanglian and berberine liposomes). In the study of HepG2 cells, the IC50 values of free drugs were 39.0 μg/mL for huanglian extract and 48.0 μg/mL for berberine solution; and the IC50 values of liposomal drugs were 9.0 μg/mL for huanglian liposomes and 1.3 μg/mL for berberine liposomes. The IC50 values of liposomal drugs were lower than the free drugs for the growth inhibition of hepatoma cells. Therefore, liposome could be a good drug carrier to enhance the anti-hepatoma effects of huanglian and berberine.
URI: http://hdl.handle.net/11455/52037
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.