Please use this identifier to cite or link to this item:
標題: Preparation and Application of Huanglian Microemulsion as the Chinese Medicine Dressing for Cold Noodles, in Order to Extend Shelf- Life and Enhance Herbal Favor
作者: 尹心怡
Yin, Hsin-Yi
關鍵字: 黃連
Huanglian microemulsion
Ready to Eat
pseudo-ternary phase diagram
出版社: 食品暨應用生物科技學系所
引用: Abdul-Raouf UM, Beuchat LR, Ammar MS. Survival and growth of Escherichia coli O157:H7 on salad vegetables. Appl Environ Microbiol 9:1999- 2006 (1993). Agata N, Ohta M, Mori M, Isobe M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett 129:17-20 (1995). Al-Adham IS, Khalil E, Al-Hmoud ND, Kierans M, Collier PJ. Microemulsions are membrane-active, antimicrobial, self-preserving systems. J Appl Microbiol 89:32-39 (2000). Al-Nabulsi AA., Han JH., Liu Z, Rodrigues-Vieira ZT., Holley RA.. Temperature-sensitive microcapsules containing lactoferrin and their action against carnobacterium viridans on bologna. J Food Sci 71:208-214 (2006). Anderson JE, Beelman RR, Doores S. Persistence of serological and biological activities of staphylococcal enterotoxin A in canned mushrooms. J Food Prot 59:1292-1299 (1996). Aycicek H, Cakiroglu S, Stevenson TH. Incidence of Staphylococcus aureus in ready-to-eat meals from military cafeterias in Ankara, Turkey. Food control 16:531-534 (2005). Bahk GJ, Todd EC.D., Hong CH, Oh DH, Ha SD. Exposure assessment for Bacillus cereus in ready-to-eat Kimbab selling at stores. Food control 18 682-688 (2007). Baird RM, Lee WH. Media used in the detection and enumeration of Staphylococcus aureus. Int J Food Microbiol 26:15-24 (1995). Baird-Parker AC. The Staphylococci: an introduction. J Appl bacterial Symp Suppl 15-85 (1990). Beecher DJ, Macmillan JD. Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59:1778-1784 (1991). Belkoura L, Strey R. Freeze fracture direct imaging (FFDI): A hybrid method in preparing specimen for Cryo-TEM. Microscopy and Microanalysis 9(SUPPL.3):496-497 (2003). Belletti N, Lanciotti R, Patrignani F, Gardini F. Antimicrobial efficacy of citron essential oil on spoilage and pathogenic microorganisms in fruit-based salads. J Food Sci 73:331-338 (2008). Bergdoll MS. Staphylococcus aureus. J Assoc Off Anal Chem 74:706-710 (1991). Bremner PJ, Fletcher GC, Osborne C. Clostridium botulinum in ready-to-eat in seafood. New Zealand Institute for Crop & Food Research Limited (2003). Chen WH, Pang JY, Qin Y, Peng Q, Cai Z, Jiang ZH. Synthesis of linked berberine dimers and their remarkably enhanced DNA-binding affinities. Bioorg Med Chem Lett 15:2689-2692 (2005). Cherington M. Clinical spectrum of botulism. Muscle Nerve 21:701-710 (1998). Chorianopoulos NG, Giaouris ED, Skandamis PN, Haroutounian SA, Nychas GJE. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid–base sanitizers. J Appl Micrbiol 104:1586-1869 (2008). Colombo ML, Bugatti C, Mossa A, Pescalli N, Piazzoni L, Pezzoni G, Menta E, Spinelli S, Johnson F, Gupta RC, Dasaradhi L. Cytotoxicity evaluation of natural coptisine and synthesis of coptisine from berberine. Farmaco 56:403-409 (2001). Das KP, Kinsella JE. The stability of food emulsions - role of protein and non-protein emulsifiers in emulsion stability. Adv Food Nutr Res 34:81-201 (1990). Dobbs KL, Austin JW. (1997) Clostridium botulinum. In: Doyle MP, Beuchat LR, Montville TJ, editors. Food microbiology: fundamentals and frontiers. ASM Press p. 288-304 Washington, US. DuPont HL, Formal SB, Hornick RB, Snyder MJ, Libonati JP, Sheahan DG, LaBrec EH, Kalas JP. Pathogenesis of Escherichia coli diarrhea. N Engl J Med 285(1):1-9 (1971). Fagerlund A, Lindback T, Storset AK, Granum PE, Hardy SP. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154:693-704 (2008). Fang TJ, Wei QK, Liao CW, Hung MJ, Wang TH. Microbiological quality of 18 degrees C ready-to-eat food products sold in Taiwan. Int J Food Microbiol 80:241-250 (2003). Fernandes JC, Tavaria FK, Soares JC, Ramos OS, João Monteiro M, Pintado ME, Xavier Malcata F. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25:922-928 (2008). Floury J, Desrumaux A, Lardieres J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies 1:127-134 (2000). Francis GA, Thomas C, O’Beirne D. The microbiological safety of minimally processed vegetable. Int J Food Sci Nutr 34:1-22 (1999). Freile ML, Giannini F, Pucci G, Sturniolo A, Rodero L, Pucci O, Balzareti V, Enriz RD. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia 74:702-705 (1999). Garcia RM, Zurera-Cosana G. Determination of ready-to-eat vegetable salad shelf-life. Int J Food Microbiol 36:31-38 (1997). Goldberg MB, Sansonetti PJ. Shigella subversion of the cellular cytoskeleton: a strategy for epithelial colonization. Infect Immun 61:4941-4946 (1993). Gursoy RN, Benita S. Self-emulsifying drug delivery systems for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58:173-182 (2004). Guzey D, McClements DJ. Influence of Environmental Stresses on O/W Emulsions Stabilized by b-Lactoglobulin–Pectin and b-Lactoglobulin–Pectin–Chitosan Membranes Produced by the Electrostatic Layer-by-Layer Deposition Technique. Food Biophys 1: 30-40 (2006). Hayashi K, Minoda K, Nagaoka Y, Hayashi T, Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg Med Chem Lett 17:1562-1564 (2007). Hiroshi ZY, Senzo S, Takeshi T, Yasuo K. Epidemiology, enteropathogenicity, and classification of parahaemolyticus. J Infect Dis 115:436-44 (1965). Houssam AK, Shams T, Richard L, Ingram R. Vibrio parahaemolyticus as a cause for necrotizing fasciitis in a patient with cirrhosis. Am J Gastroenterol 96:S125-S126 ( 2001). Iwasa K, Nanba H, Lee DU, Kang SI. Structure-activity relationships of protoberberines having antimicrobial activity. Planta Med 64: 748-751 (1998). Karmali MA, Steele BT, Petric M. Sporadic cases of hemolytic-uremic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stool. Lacent 1:619-620 (1983). King AD, Bolin HR. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food Technol 43:132-135 (1989). Koga T, Takumi K. Nutrient starvation induces cross protection against heat, osmotic, or H2O2 challenge in Vibrio parahaemolyticus. Microbiol Immunol 39:213-215 (1995). Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051-2056 (2008). Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189-198 (2000). Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89-121 (2000). Linda DR, Schlossman M, O''Lenick A, Somasundaran P. (1998) Surfactants in personal care products and decorative cosmetics: CRC Press. Liu Q, Liu Y, Li Y, Yao S. Nonaqueous capillary electrophoresis coupled with laser-induced native fluorescence detection for the analysis of berberine, palmatine, and jatrorrhizine in Chinese herbal medicines. J Sep Sci 29:1268-1274(2006). Lowy FD. Staphylococcus aureus infections. N Engl J Med 339:520-531 (1998). Lund T, Granum PE. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141:151-156 (1996). Maa YF, Hsu C. Liquid-liquid emulsification by rotor/stator homogenization. J Control Release 38:219-228 (1996). Mahadeo M, Tatini SR. The potential use of nisin to control Listeria monocytogenes in poultry. Lett Appl Microbiol 18:323-326 (1994). Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bär W, Krähenbühl S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336:1142-1148 (1997). McCarter LL, Wright ME. Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J Bacteriol 175:3361-3371 (1993). Megyesi M, Biczók L. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid. Chem Phys Lett 447:247-251 (2007). Mehta SK, Kaur G, Bhasin KK. Tween-embedded microemulsions- physicochemical and spectroscopic analysis for antitubercular drugs. AAPS PharmSciTech 11:143-153 (2010). Mosupye FM, von Holy A. Microbiological quality and safety of ready-to-eat street-vended foods in Johannesburg, South Africa. J Food Prot. 62: 1278-1284 (1999). Muntada-Garriga JM, Rodriguez-Jerez JJ, Lopez-SabaterEI, Mora-Ventura MT. Effect of chill and freezing temperatures on survival of Vibrio parahaemolyticus inoculated in homogenates of oyster meat. Lett Appl Microbiol 20:225-227 (1995). Nakamoto K, Sadamori S, Hamada T. Effects of crude drugs and berberine hydrochloride on the activities of fungi. J Prosthet Dent 64:691-694 (1990). Nataro PJ, Kaper BJ. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142-201 (1998). Nguyen-The C, Carlin F. The microbiology of minimally processed fresh fruits and vegetables. Crit Rev Food Sci Nutr 34:371-401 (1994). Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech 10:1234-1342 (2009). Ong ES, Len SM. Pressurized hot water extraction of berberine, baicalein, and glycyrrhizin in medicinal plants. Analytica Chimica Acta 482:81-89 (2003). Peck MW. Clostridia and foodborne disease. Microbiology Today 29:9-12 (2002). Peng S, Williams RA. Controlled production of emulsions using a crossflow membrane. Part Part Syst Charact 15:21-25 (1998). Pirttijarvi TS, Andersson MA, Salkinoja-Salonen MS. Properties of Bacillus cereus and other bacilli contaminating biomaterial-based industrial processes. Int J Food Microbiol 60:231-239 (2000). Russell AD. Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol 71:191-201 (1991). Rusul G, Yaacob NH. Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA. Int J Food Microbiol 25:131-139 (1995). Schultz S, Wagner G, Urban K, Ulrich J. High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 24: 361-368 (2004). Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar R, Ali M. Formulation Development and Optimization Using Nanoemulsion Technique: A Technical Note. AAPS PharmSciTech 8:E1-E6 (2007). Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118-122 (1998). Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci 10:102-110 (2005). Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5''-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97:1433-1437 (2000). Taylor DN, Bopp CA, Birkness K, Cohen ML. An outbreak of Salmonella associated with a fatality in a healthy child: a large dose and severe illness. Am J Epidemiol 119:907-912 (1984). Ukuku DO, Bari ML, Kawamoto S, Isshiki K. Use of hydrogen peroxide in combination with nisin, sodium lactate and citric acid for reducing transfer of bacterial pathogens from whole melon surfaces to fresh-cut pieces. Int J Food Microbiol 104:225-233 (2005). Update: Salmonella enteritidis infections and grade A shell eggs-United States, 1989. MMWR 38:877-880 (1990). US Food and Drug Administration. (2010). US Food and Drug Administration. The Bad Bug Book. International Medial Publishing, Virginia. 12-13 (2004). Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I, Flahaut S, Jabbouri S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents 34:60-66 (2009). Warisnoicharoen W, Lansley AB, Lawrence MJ. Light scattering investigations on dilute non-ionic oil-in-water microemulsions. AAPS PharmSci 2:Article 12 (2000). Wei QK, Hwang SL, Chen TR. Microbiological quality of ready-to-eat food products in southern Taiwan. Journal of Food and Drug Analysis 14:68-73 (2006). Wieneke AA, Roberts D, Gilbert RJ. Staphylococcal food poisoning in the United Kingdom, 1969-1990. Epidemiol Infect 110:519-531 (1993). Yadav RC, Kumar GS, Bhadra K, Giri P, Sinha R, Pal S, Maiti M. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Bioorg Med Chem 13:165-174 (2005). Yi ZB, Yan Yu, Liang YZ, Bao Zeng. Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J Pharm Biomed Anal. 44:301-304 (2007). Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 8:454-461 (2005). Zhang H, Shen Y, Weng P, Zhao G, Feng F, Zheng X. Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Int J Food Microbiol 135(3):211-215 (2009). 尤明強。人參微脂體減緩過氧化氫對細胞氧化傷害之評估與黃連及小檗鹼微脂體抗人類肝癌細胞之效能分析。國立中興大學。碩士論文。2009。 王有忠。2000。食品添加物。華香園出版社 p 81-110。台北,台灣。 田智勇,李振國。黃連的研究新進展時珍國醫國藥,2004。15(10): 704-706。 朱靜,石任兵,劉斌。黃連的藥理學研究進展。北京中醫藥大學學報,2001。 6: 51-53。 行政院衛生署。2004。食品衛生管理法。行政院衛生署編。台北,台灣。 行政院衛生署食品資訊網,台灣地區食品中毒之統計調查。 行政院衛生署食品藥物管理局,食品添加物使用範圍及限量暨規格標準。 吳文成。1999。食品化學。復文書局 p 213。台南,台灣。 吳立軍。2006。中藥化學。科技圖書出版社。台灣。 呂換地,史奕,張景,王芳,尹書芳。黃連中鹽酸小檗鹼含量檢驗方法的對比與研究。科技信息。2007。17: 35-36。 李紅磊。中藥微乳給藥體系丹參酮和丹酚酸複合微乳給藥體系的研究。第一軍醫大學。碩士論文。2006。 杜紅。中藥微乳載藥體系關鍵技術研究。北京中醫藥大學。博士論文。2008。 林公璿。以超音波改善懸浮溶液薄膜過濾之濾速。元智大學。碩士論文。2003。 姜延偉,王懿萍,吳玉娟,洪鵬舉,許倫杰。黃連多糖抑菌活性初探。時珍國醫國藥,2009。1: 56-57。 范龍生。台灣大規模連鎖便利商店鮮食商品消費者行為研究。東海大學。碩士論文。2003。 孫紅武,歐陽五慶。鹽酸黃連素納米微乳的制備及其體外抗菌活性研究。西北農林科技大學學報。2007。1: 62-65。 孫紅祥,張昌禧,吳遠文。黃連屬藥用植物的數量分類學研究。中國藥學雜誌。1995。30(1): 7-9。 徐錦堂,王立群,徐蓓。黃連研究進展。中國醫學科學院學報。2004。26: 704-707。 馬伏英。黃連等中藥抗柯薩奇B3病毒性心肌炎的實驗研究。武警醫學。1997。4: 193-195。 馬開森,陳仕江,張德利,鐘國躍。黃連有效成分積累動態的研究。時珍國醫國藥。2007。18(9): 2093-2095。 張先洲,祝紅達,夏莉,潘細貴。青藤鹼微乳的相圖研究及質量控制。中國醫院藥學雜志。2006。26(10):42-45。 張國光。便利商店商品陳列與商店形象及銷售績效之關聯性研究。國立高雄第一科技大學。碩士論文。2002。 梁宜峰。2010。2010年我國連鎖式便利商店業分析。台灣經濟研究院產經資料庫。 許振耀。1995。食品添加物使用法。華香園出版社p 1-10。台北,台灣。 連英釋。便利商店鮮食商品之銷售預測模式探討-以統一超商為例。樹德科技大學。碩士論文。2004。 傅世垣。2002。中醫大百科全書。中國大百科全書出版社 p 134。 舒華,向麗華。黃連藥理作用及臨床研究。甘肅中醫。2004。12: 5-6。 黃卓賢。糖類對仙草葉膠/澱粉混合系統物性之影響。靜宜大學。碩士論文。2004。 黃海燕,鐘建理,薛漓。黃連上清片中黃連的鑒別及含量測定。中國醫院藥學雜志。2007。3: 132-133。 黃憲彥,張完珠。1996。便利商店論壇。中國生產力中心。台北。 鄒紅,梅靜,許臘英。不同炮制工藝對黃連中鹽酸小檗鹼含量的影響。湖北中醫學院學報。2008。10(1): 36-38。 劉映麓,羅曉燕,尹春南。鹽酸黄連素的苦味包合研究。廣東藥學。1999。93(24): 24-25。 鄭淑瀅。酸與鹽對醃梅蛋理化及流變性質影響之探討。國立中興大學。碩士論文。2004。 魏長志。黃芩 黃連 黃柏體外抗金黃色葡萄球菌和痢疾桿菌對比實驗。遼寧中醫藥大學學報。2009。3: 161-163。
摘要: 近年來因國人飲食習慣的改變,外食人口的急增,超商所販售的鮮食產品已成為國人正餐的主要選擇之ㄧ。鮮食食品強調其新鮮度與即食性,販售種類包含壽司、飯糰、手捲、三明治、便當及涼麵等,而上述鮮食產品也會出現於傳統的早餐店。一般鮮食產品在運送或販售的溫度是處於4至18℃,故易因此期間的處理不當,造成微生物的污染而使產品品質降低,並極可能引起食品中毒事件的發生。為避免此類問題在涼麵產品的出現,本研究將以黃連製成一黃連微乳化液,作為涼麵的調味醬料,以保持涼麵的新鮮度及增加風味,並期達到養生的功效。本研究首先探討黃連的萃取條件與黃連微乳化液(HME)製備之最適化,其次分析HME的形成率及抗菌力,並分別在4、18和27℃下儲藏7天探討其安定性,最後將HME應用於涼麵上分析其抑菌能力,並進行感官品評試驗以了解消費者的接受度。結果顯示5 g黃連粉末於25 mL去離子水中以超音波萃取可達最高的小檗鹼濃度(7.3 mg/mL),且具最佳之抗菌能力。在HME製程中以界面活性劑及共界面活性劑體積比(Smix)為2:1所形成的乳化區域最大,而製成最穩定的HME混合比例為油相:水相: Smix = 0.72: 0.18: 0.1。此外,以高壓均質方式於500 bar作用2分鐘即可使HME粒徑由1 µm 下降到200-300 nm,並維持HME中高濃度的小檗鹼含量。未稀釋的HME具最佳的抗菌能力,抗菌效率為Salmonella enterica> Bacillus cereus> Staphylococcus aureus> Escherichia coli。當HME應用於涼麵上在室溫作用8小時後,與控制組(未添加HME)菌數相較,其菌數下降一個Log,且在18℃作用12小時內仍有抑菌效果。此外,HME的粒徑、黏度、色度以及小檗鹼含量不隨儲藏天數及溫度而改變,代表其在品質穩定性佳。另外,將製成的HME搭配兩種醬汁進行品評,大部分品評者仍感受到微帶苦味,但樣品259(油: PHME; 醬汁: 十全大補)有2.4%比例是很喜歡,代表仍有族群偏好此種類型的涼麵。由本研究結果可以得知HME具有良好的抗菌力與產品安定性,可開發為保持涼麵新鮮度的的天然中藥醬汁。
In recent years, people in Taiwan prefer to choose the “Ready to Eat” as their meals due to the change in dietary habits. The products of “Ready to Eat” emphasize on their freshness and speed of preparation. They are mainly sold in convenient stores, and have various items including sushi, rice and vegetable rolls, sandwiches, lunch boxes, soba, hand scrolls and so on; these products are also often seen in the traditional breakfast shops. The products of “Foods to Go” are usually kept at 4-18℃ during transportation or when waiting to be sold. In these periods, the quality of products may decrease due to contamination by microorganisms. The food may also trigger food poisoning at times. Therefore, the objective of this study is to prepare a kind of Chinese medicine dressing using Huanglian microemulsion (HME) to preserve the cold noodles, improve the flavor, and enhance the health condition of consumers. The first step in this study was to optimize the extraction conditions of Huanglian and production of HME, followed by analyzing the formation and antimicrobial ability of HME. Moreover, HME was added into cold noodles to evaluate its antimicrobial activity, and analyze its stability for a 7-day storage at 4, 18, or 27℃. In addition, a sensory evaluation of HME was conducted in order to estimate its acceptance by the consumers. The results showed that five grams of Huanglian powder extracted with 25 mL of distilled water using a sonicator achieved the saturated concentration for berberine (7.3 mg/mL) and had a better antibacterial ability. The optimal ratios (Smix) of surfactant/co-surfactant at 2:1 had the most extensive area of emulsion phase (E phase) and the optimal volume ratio to prepare HME was “oil: water: Smix = 0.72:0.18: 0.1”. Moreover, HME was homogenized at 500 bar for 2 min, and the size of HNE was decreased from 1 µm to about 200-300 nm. There was no influence on the berberine concentration of HME after the above homogenization. Furthermore, the antibacterial ability of undiluted HME was Salmonella enterica> Bacillus cereus> Staphylococcus aureus> Escherichia coli. As HME was applied to cold noodles to react at RT for 8 hours, it could decrease to one Log (CFU/mL) of the control group (not adding HME), and still hold its antibacterial ability within 12 h at 18℃. Additionally, the duration of storage (1-7 days) and various temperatures (4, 18, and 27℃) had no effect on the size, viscosity, color, and berberine content of HME. Finally, HME was combined with two different sources and was tested by people. Most people still tasted the bitterness of HME; however, there was a 2.4% of participating people who liked NO. 259 (oil: PHME; sauce: Shiquan Dabu). The results indicated that there were still some people who accepted the HME infused cold noodles. In conclusion, this experiment has proved that high pressure homogenization was an effective method to produce HME with high stability and furthermore, HME had good antimicrobial activity to inhibit the growth of microorganisms on cold noodles.
Appears in Collections:食品暨應用生物科技學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.