Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52105
標題: 水稻GDSL 脂肪酶OsGLP之功能性蛋白質體學分析及水稻發育時期 OsGLP基因表現情形
Functional proteomic analysis of rice GDSL lipase OsGLP and expression analysis during rice plants development
作者: Wang, Wun-Nai
王玟乃
關鍵字: Rice
GDSL脂肪酶嗜甲基酵母菌
GDSL lipase
Pichia pastoris
出版社: 食品暨應用生物科技學系所
引用: 潘考祿、俞銘誠、徐祖安 (2004) 利用酵母菌表現系統生產擬人化醣蛋白。化工51(5): 26-33 戶刈義次 (1963) 作物學試驗法。東京農業技術學會印行 159-176 張正賢譯,Yoshida Shoui Chi原著 (1988) 稻作學精要。國立編譯館 Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Progress in Lipid Research 43: 534-552 Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochemistry Journal 343: 177-183 Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the pricipkle of protein-dye binding. Analysis Biochemistry 72: 248-254 Brick DJ, Brumlik MJ, Buckley JT, Cao JX, Davies PC, Misra S, Tranbarger TJ, Upton C (1995) A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Letters 377: 475-480 Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition 18: 119-138 Derewenda ZS, Sharp AM (1993) News from the interface: the molecular structures of triacylglyceride lipases. Trends in Biochemical Sciences 18: 20-25 Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102: 111-115 Fredrik B, Sven EG, Ole K (1991) The future impact of industrial lipases. Trends in Biotechnology 9: 360-363 Galleni M, Lindberg F, Normark S, Cole S, Honore N, Joris B, Frere JM (1988) Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochemistry Journal 250: 753-760 Gardner JC, DiCicco RL (1994) Spec.Chem.: S9-S12 Hong KH, Jang WH, Choi KD, Yoo OJ (1991) Characterization of Pseudomonas fluorescens carboxylesterase: cloning and expression of the esterase gene in Escherichia coli. Agricultural and Biological Chemistry 55: 2839-2845 Iwai M, Tsujisaka Y, Okamoto Y, Fukumoto J (1973) Lipid requirement for the lipase production by Geotrichum candidum link. Agricultural and Biological Chemistry 37: 929 Jaeger KE, Eggert T (2002) Lipases for biotechnology. Current Opinion in Biotechnology 13: 390-397 Jaeger KE, Ransac S, Dijkstra BW, Colson C, Heuvel MV, Misset O (1994) Bacterial lipase. FEMS Microbiology Review 15: 29-63 Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochemical and Biophysical Research Communications 374: 693-698 Kim KK, Song HK, Shin DH, Hwang KY, Suh SW (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5: 173-185 Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences 44: 98-104 Kram BW, Bainbridge EA, Perera MA, Carter C (2008) Identification, cloning and charcterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant molecular biology 68: 173-183 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications 379: 1038-1042 Macrae AR (1981) Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists'' Society 60: 291-294 Marchetti JM, Miguel VU, Errazu AF (2005) Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews 11: 1300-1311 Masse L, Kennedy KJ, Chou S (2001) Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresource Technology 77: 145-155 Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M (1995) Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Applied and Environmental Microbiology 61: 3208-3215 Peattie DA, Alonso RA, Hein A, Caulfield JP (1989) Ultrastructural localization of giardins to the edges of disk microribbons of Giarida lamblia and the nucleotide and deduced protein sequence of alpha giardin. The Journal of Cell Biology 109: 2323-2335 Pohlenz HD, Boidol W, Schuttke I, Streber WR (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. The Journal of Bacteriology 174: 6600-6607 Schmid RD, Verger R (1998) Lipases: Interfacial enzymes with attractive applications. Angewandte Chemie International Edition 37: 1608-1633 Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and apllications of lipases. Biotechnol Adv 8: 627-662 Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75-77 Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends in Microbiology 5: 156-161 Upton C, Buckley JT (1995) A new family of lipolytic enzymes. Trends in Biochemical Sciences 20: 178-179 Vadehra DV, Harmon LG (1969) Factors affecting production of Staphylococcal lipase. The Journal of Bacteriology 32: 147 Verger R (1997) Interfacial activation of lipases: facts and antifact. Trends Biotechnology 15: 32-38 Verschueren KH, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature (London) 363: 693-698 Wenman WM, Meuser RU, Nyugen Q, Kilani RT, el-Shewy K., Sherburne R (1993) Characterization of an immunodominant Giardia lamblia protein antigen related to alpha giardin. Parasitology Research 79: 587-592 Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology 22: 1393-1398 Yadwad VB, Ward OP, Noronha LC (1991) Application of lipase to concentrate the docosahexaenoic acid (DHA) fraction of fish oil. Biotechnology and Bioengineering 38: 956-959
摘要: 脂肪酶為一種催化三酸甘油酯水解或合成之酵素,加上其受質特異性、立體特異性等化學特性,在工業上具有高應用價值;本研究自水稻葉片篩選具有較佳活性之脂肪酶,經液體層析串聯質譜儀鑑定其為GDSL脂肪酶,命名為OsGLP,核苷酸長度為1101 bp,位於水稻第一條染色體,蛋白質分子量約37 kDa,經生物資訊分析其具有26個胺基酸之訊號胜肽(signal peptide)以及需要轉譯後修飾作用-醣基化。GDSL脂肪酶具有以下幾項特點:(1)保留序列為Gly-Asp-Ser-Leu,Ser為催化活性中心,且此模組(motif)靠近序列N端,不同於一般脂肪酶位於序列中間位置之Gly-X-Ser-X-Gly保留序列;(2)序列中含四個保留胺基酸Ser, Gly, Asn, His分別位於block I, II, III, V保留區域;(3)活化位的構型會隨受質不同而改變,適應性較一般脂肪酶高。 所得之脂肪酶基因分別以大腸桿菌系統BL21(DE3)、AD494(DE3)、Tuner(DE3)pLysS、C43(DE3)與嗜甲基酵母菌系統KM71表現。在BL21(DE3)與AD494(DE3)皆無法取得轉殖株,於Tuner(DE3)pLysS與C43(DE3)則能正常表現,因C43(DE3)為抗毒物菌種,推測此重組蛋白OsGLP可能對大腸桿菌具有毒性。此外,於Tuner(DE3)pLysS與C43(DE3)表現情形皆形成包涵體,降低培養溫度亦無法改善此情形;而以具有轉譯後修飾之功能酵母菌KM71表現成熟重組蛋白質(mature protein, MOsGLP, 37 kDa),從中取得具有活性之可溶性蛋白質。 文中亦探討此脂肪酶基因於水稻中可能扮演的生理功能,其主要表現於孕穗時期,推測此脂肪酶基因與調控水稻之生殖生長相關。
URI: http://hdl.handle.net/11455/52105
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.