Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/52123
標題: 2-去氧葡萄糖可藉由弱化人類臍靜脈內皮細胞中的血管內皮生長因子受器-2及整合素β1所調控的訊息傳遞路徑而抑制血管新生作用
2-Deoxyglucose inhibits angiogenesis through attenuating vascular endothelial growth factor receptor 2- and integrin β1-mediated signaling pathway in human umbilical vascular endothelial cells
作者: 莊宜臻
Chuang, I-Chen
關鍵字: 血管新生
angiogenesis
2-去氧葡萄糖
人類臍靜脈內皮細胞
整合素β1
蛋白質糖基化作用
血管內皮生長因子受器-2
2-deoxyglucose
human umbilical vascular endothelial cells
integrin β1
N-linked glycosylation
vascular endothelial growth factor receptor-2
出版社: 食品暨應用生物科技學系所
引用: 1. Wright TJ, Leach L, Shaw PE, Jones P: Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Experimental cell research 2002, 280(2):159-168. 2. Velazquez OC: Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. Journal of vascular surgery 2007, 45 Suppl A:A39-47. 3. Gooz P, Gooz M, Baldys A, Hoffman S: ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis. Biochemical and biophysical research communications 2009, 380(1):33-38. 4. Risau W: Mechanisms of angiogenesis. Nature 1997, 386(6626):671-674. 5. Sacewicz I, Wiktorska M, Wysocki T, Niewiarowska J: [Mechanisms of cancer angiogenesis]. Postepy higieny i medycyny doswiadczalnej 2009, 63:159-168. 6. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993, 72(6):835-846. 7. Zeng H, Dvorak HF, Mukhopadhyay D: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. The Journal of biological chemistry 2001, 276(29):26969-26979. 8. Silva R, D''Amico G, Hodivala-Dilke KM, Reynolds LE: Integrins: the keys to unlocking angiogenesis. Arteriosclerosis, thrombosis, and vascular biology 2008, 28(10):1703-1713. 9. Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25(34):4633-4646. 10. Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, Savaraj N, Lane AN, Lampidis TJ: Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Molecular cancer therapeutics 2007, 6(11):3049-3058. 11. Merchan JR, Kovacs K, Railsback JW, Kurtoglu M, Jing Y, Pina Y, Gao N, Murray TG, Lehrman MA, Lampidis TJ: Antiangiogenic activity of 2-deoxy-D-glucose. PloS one 2010, 5(10):e13699. 12. Tagg SL, Foster PA, Leese MP, Potter BV, Reed MJ, Purohit A, Newman SP: 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. British journal of cancer 2008, 99(11):1842-1848. 13. Yang H, Guo R, Wu J, Peng Y, Xie D, Zheng W, Huang X, Liu D, Liu W, Huang L et al: The antiepileptic effect of the glycolytic inhibitor 2-deoxy-D-glucose is mediated by upregulation of K(ATP) channel subunits Kir6.1 and Kir6.2. Neurochemical research 2013, 38(4):677-685. 14. Yang NC, Song TY, Chen MY, Hu ML: Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD(+) level, SIRT1 activity and replicative lifespan of human Hs68 cells. Biogerontology 2011, 12(6):527-536. 15. El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C: Sugar-free approaches to cancer cell killing. Oncogene 2011, 30(3):253-264. 16. Lohela M, Bry M, Tammela T, Alitalo K: VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Current opinion in cell biology 2009, 21(2):154-165. 17. Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic angiogenesis. Journal of cellular physiology 1997, 173(2):206-210. 18. Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nature reviews Molecular cell biology 2007, 8(6):464-478. 19. Van den Brenk HA, Crowe M, Kelly H, Stone MG: The significance of free blood in liquid and solid tumours. British journal of experimental pathology 1977, 58(2):147-159. 20. Folkman J, D''Amore PA: Blood vessel formation: what is its molecular basis? Cell 1996, 87(7):1153-1155. 21. Xu L, Kanasaki K, Kitada M, Koya D: Diabetic angiopathy and angiogenic defects. Fibrogenesis & tissue repair 2012, 5(1):13. 22. Abdelrahim M, Konduri S, Basha R, Philip PA, Baker CH: Angiogenesis: an update and potential drug approaches (review). International journal of oncology 2010, 36(1):5-18. 23. Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR: Antiangiogenic therapy for cancer: an update. Pharmacotherapy 2012, 32(12):1095-1111. 24. Sridhar SS, Shepherd FA: Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer. Lung cancer 2003, 42 Suppl 1:S81-91. 25. Veritti D, Sarao V, Lanzetta P: Neovascular age-related macular degeneration. Ophthalmologica Journal international d''ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde 2012, 227 Suppl 1:11-20. 26. Cruess AF, Berger A, Colleaux K, Greve M, Harvey P, Kertes PJ, Sheidow T, Tourville E, Williams G, Wong D: Canadian expert consensus: optimal treatment of neovascular age-related macular degeneration. Canadian journal of ophthalmology Journal canadien d''ophtalmologie 2012, 47(3):227-235. 27. Scott AW, Bressler SB: Long-term follow-up of vascular endothelial growth factor inhibitor therapy for neovascular age-related macular degeneration. Current opinion in ophthalmology 2013, 24(3):190-196. 28. Wagoner LE, Merrill, W., Jacobs, J., Conway, G., Boehmer, J., Thomas, K., Stegmann, T.J.: Angiogenesis Protein Therapy With Human Fibroblast Growth Factor (FGF-1): Results Of A Phase I Open Label, Dose Escalation Study In Subjects With CAD Not Eligible For PCI Or CABG. Circulation 2007:116:II_443. 29. Stegmann TJ: FGF-1: a human growth factor in the induction of neoangiogenesis. Expert opinion on investigational drugs 1998, 7(12):2011-2015. 30. Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, Laham RJ, Li W, Pike M, Sellke FW et al: Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circulation 2000, 102(11):E73-86. 31. Drela E, Stankowska K, Kulwas A, Rosc D: Endothelial progenitor cells in diabetic foot syndrome. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2012, 21(2):249-254. 32. Balingit PP, Armstrong DG, Reyzelman AM, Bolton L, Verco SJ, Rodgers KE, Nigh KA, diZerega GS: NorLeu3-A(1-7) stimulation of diabetic foot ulcer healing: results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2012, 20(4):482-490. 33. Wagner PD: The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochemical Society transactions 2011, 39(6):1556-1559. 34. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT: The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 255(5047):989-991. 35. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB: Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991, 6(9):1677-1683. 36. Folkman J: Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. The New England journal of medicine 1995, 333(26):1757-1763. 37. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine 1995, 1(1):27-31. 38. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW: The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Molecular endocrinology 1991, 5(12):1806-1814. 39. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA: The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. The Journal of biological chemistry 1991, 266(18):11947-11954. 40. Holmes K, Roberts OL, Thomas AM, Cross MJ: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling 2007, 19(10):2003-2012. 41. Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2005, 23(5):1011-1027. 42. Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M: Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. The Journal of biological chemistry 1998, 273(47):31283-31288. 43. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. The Journal of biological chemistry 1994, 269(43):26988-26995. 44. Fong GH, Rossant J, Gertsenstein M, Breitman ML: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995, 376(6535):66-70. 45. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(16):9349-9354. 46. Dunk C, Ahmed A: Vascular endothelial growth factor receptor-2-mediated mitogenesis is negatively regulated by vascular endothelial growth factor receptor-1 in tumor epithelial cells. The American journal of pathology 2001, 158(1):265-273. 47. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L: Signal transduction by vascular endothelial growth factor receptors. The Biochemical journal 2011, 437(2):169-183. 48. Fuh G, Li B, Crowley C, Cunningham B, Wells JA: Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. The Journal of biological chemistry 1998, 273(18):11197-11204. 49. McColl BK, Baldwin ME, Roufail S, Freeman C, Moritz RL, Simpson RJ, Alitalo K, Stacker SA, Achen MG: Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. The Journal of experimental medicine 2003, 198(6):863-868. 50. Oelrichs RB, Reid HH, Bernard O, Ziemiecki A, Wilks AF: NYK/FLK-1: a putative receptor protein tyrosine kinase isolated from E10 embryonic neuroepithelium is expressed in endothelial cells of the developing embryo. Oncogene 1993, 8(1):11-18. 51. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC: Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376(6535):62-66. 52. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996, 380(6573):435-439. 53. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O''Shea KS, Powell-Braxton L, Hillan KJ, Moore MW: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996, 380(6573):439-442. 54. Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K: Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene 1993, 8(11):2931-2937. 55. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D et al: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. The EMBO journal 2001, 20(17):4762-4773. 56. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K: VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996, 122(12):3829-3837. 57. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proceedings of the National Academy of Sciences of the United States of America 1995, 92(8):3566-3570. 58. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K: Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. The American journal of pathology 2000, 156(5):1499-1504. 59. Hynes RO, Lively JC, McCarty JH, Taverna D, Francis SE, Hodivala-Dilke K, Xiao Q: The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harbor symposia on quantitative biology 2002, 67:143-153. 60. Springer TA: Leucocyte adhesion to cells. Scandinavian journal of immunology 1990, 32(3):211-216. 61. van der Flier A, Sonnenberg A: Function and interactions of integrins. Cell and tissue research 2001, 305(3):285-298. 62. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M: The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. The American journal of pathology 2002, 160(1):195-204. 63. Ruoslahti E, Engvall E: Integrins and vascular extracellular matrix assembly. The Journal of clinical investigation 1997, 99(6):1149-1152. 64. Pozzi A, Zent R: Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Experimental nephrology 2003, 94(3):e77-84. 65. Mitra SK, Schlaepfer DD: Integrin-regulated FAK-Src signaling in normal and cancer cells. Current opinion in cell biology 2006, 18(5):516-523. 66. Mitra SK, Hanson DA, Schlaepfer DD: Focal adhesion kinase: in command and control of cell motility. Nature reviews Molecular cell biology 2005, 6(1):56-68. 67. Albelda SM, Daise M, Levine EM, Buck CA: Identification and characterization of cell-substratum adhesion receptors on cultured human endothelial cells. The Journal of clinical investigation 1989, 83(6):1992-2002. 68. Smith LL, Cheung HK, Ling LE, Chen J, Sheppard D, Pytela R, Giachelli CM: Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. The Journal of biological chemistry 1996, 271(45):28485-28491. 69. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994, 264(5158):569-571. 70. Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nature reviews Cancer 2008, 8(8):604-617. 71. Abraham S, Kogata N, Fassler R, Adams RH: Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circulation research 2008, 102(5):562-570. 72. Carnevale E, Fogel E, Aplin AC, Gelati M, Howson KM, Zhu WH, Nicosia RF: Regulation of postangiogenic neovessel survival by beta1 and beta3 integrins in collagen and fibrin matrices. Journal of vascular research 2007, 44(1):40-50. 73. Ke C, Jin H, Cai J: AFM Studied the Effect of Celastrol on beta1 Integrin-Mediated HUVEC Adhesion and Migration. Scanning 2012. 74. Fassler R, Meyer M: Consequences of lack of beta 1 integrin gene expression in mice. Genes & development 1995, 9(15):1896-1908. 75. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH: Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes & development 1995, 9(15):1883-1895. 76. Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, Krell HW, Weidle UH, Addicks K, Fassler R: Beta 1 integrin is essential for teratoma growth and angiogenesis. The Journal of cell biology 1997, 139(1):265-278. 77. Lei L, Liu D, Huang Y, Jovin I, Shai SY, Kyriakides T, Ross RS, Giordano FJ: Endothelial expression of beta1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Molecular and cellular biology 2008, 28(2):794-802. 78. Brinckerhoff CE, Matrisian LM: Matrix metalloproteinases: a tail of a frog that became a prince. Nature reviews Molecular cell biology 2002, 3(3):207-214. 79. Page-McCaw A, Ewald AJ, Werb Z: Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews Molecular cell biology 2007, 8(3):221-233. 80. Hua H, Li M, Luo T, Yin Y, Jiang Y: Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cellular and molecular life sciences : CMLS 2011, 68(23):3853-3868. 81. Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation research 2003, 92(8):827-839. 82. Snoek-van Beurden PA, Von den Hoff JW: Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 2005, 38(1):73-83. 83. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY: Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. The Biochemical journal 2001, 356(Pt 3):705-718. 84. Stamenkovic I: Extracellular matrix remodelling: the role of matrix metalloproteinases. The Journal of pathology 2003, 200(4):448-464. 85. Bode W: A helping hand for collagenases: the haemopexin-like domain. Structure 1995, 3(6):527-530. 86. Steffensen B, Hakkinen L, Larjava H: Proteolytic events of wound-healing--coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 2001, 12(5):373-398. 87. Jones CB, Sane DC, Herrington DM: Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovascular research 2003, 59(4):812-823. 88. Stracke JO, Fosang AJ, Last K, Mercuri FA, Pendas AM, Llano E, Perris R, Di Cesare PE, Murphy G, Knauper V: Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS letters 2000, 478(1-2):52-56. 89. Gronski TJ, Jr., Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M, Van Wart HE, Shapiro SD: Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. The Journal of biological chemistry 1997, 272(18):12189-12194. 90. Fink K, Boratynski J: [The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis]. Postepy higieny i medycyny doswiadczalnej 2012, 66:609-628. 91. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ: Matrix metalloproteinase inhibitors. Investigational new drugs 1997, 15(1):61-75. 92. Vartio T, Vaheri A: A gelatin-binding 70,000-dalton glycoprotein synthesized distinctly from fibronectin by normal and malignant adherent cells. The Journal of biological chemistry 1981, 256(24):13085-13090. 93. Sopata I, Wize J: A latent gelatin specific proteinase of human leucocytes and its activation. Biochimica et biophysica acta 1979, 571(2):305-312. 94. Bourboulia D, Stetler-Stevenson WG: Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Seminars in cancer biology 2010, 20(3):161-168. 95. Kotra LP, Zhang L, Fridman R, Orlando R, Mobashery S: N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorganic chemistry 2002, 30(5):356-370. 96. Fernandez-Patron C, Martinez-Cuesta MA, Salas E, Sawicki G, Wozniak M, Radomski MW, Davidge ST: Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thrombosis and haemostasis 1999, 82(6):1730-1735. 97. Bogaczewicz J, Dudek W, Zubilewicz T, Wronski J, Przywara S, Chodorowska G, Krasowska D: [The role of matrix metalloproteinases and their tissue inhibitors in angiogenesis]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 2006, 21(121):80-85. 98. Alakus H, Grass G, Hennecken JK, Bollschweiler E, Schulte C, Drebber U, Baldus SE, Metzger R, Holscher AH, Monig SP: Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histology and histopathology 2008, 23(8):917-923. 99. Haas TL, Madri JA: Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends in cardiovascular medicine 1999, 9(3-4):70-77. 100. Cheng S, Alfonso-Jaume MA, Mertens PR, Lovett DH: Tumour metastasis suppressor, nm23-beta, inhibits gelatinase A transcription by interference with transactivator Y-box protein-1 (YB-1). The Biochemical journal 2002, 366(Pt 3):807-816. 101. Brew K, Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et biophysica acta 2010, 1803(1):55-71. 102. Howard EW, Bullen EC, Banda MJ: Preferential inhibition of 72- and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2. The Journal of biological chemistry 1991, 266(20):13070-13075. 103. Baragi VM, Fliszar CJ, Conroy MC, Ye QZ, Shipley JM, Welgus HG: Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases. C-terminal truncated stromelysin and matrilysin exhibit equally compromised binding affinities as compared to full-length stromelysin. The Journal of biological chemistry 1994, 269(17):12692-12697. 104. Nguyen Q, Willenbrock F, Cockett MI, O''Shea M, Docherty AJ, Murphy G: Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 1994, 33(8):2089-2095. 105. Stetler-Stevenson WG, Krutzsch HC, Liotta LA: Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. The Journal of biological chemistry 1989, 264(29):17374-17378. 106. Hopps E, Caimi G: Matrix metalloproteinases in metabolic syndrome. European journal of internal medicine 2012, 23(2):99-104. 107. Bellon G, Martiny L, Robinet A: Matrix metalloproteinases and matrikines in angiogenesis. Critical reviews in oncology/hematology 2004, 49(3):203-220. 108. Atkinson SJ, Crabbe T, Cowell S, Ward RV, Butler MJ, Sato H, Seiki M, Reynolds JJ, Murphy G: Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. The Journal of biological chemistry 1995, 270(51):30479-30485. 109. Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS: Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Laboratory investigation; a journal of technical methods and pathology 2004, 84(1):8-20. 110. Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003, 114(2):171-180. 111. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT: pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proceedings of the National Academy of Sciences of the United States of America 1992, 89(11):5192-5196. 112. Parsons JT: Focal adhesion kinase: the first ten years. Journal of cell science 2003, 116(Pt 8):1409-1416. 113. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ: The FERM domain: organizing the structure and function of FAK. Nature reviews Molecular cell biology 2010, 11(11):802-814. 114. Hildebrand JD, Schaller MD, Parsons JT: Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. The Journal of cell biology 1993, 123(4):993-1005. 115. Ezratty EJ, Partridge MA, Gundersen GG: Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature cell biology 2005, 7(6):581-590. 116. Lulo J, Yuzawa S, Schlessinger J: Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2. Biochemical and biophysical research communications 2009, 383(3):347-352. 117. Corsi JM, Rouer E, Girault JA, Enslen H: Organization and post-transcriptional processing of focal adhesion kinase gene. BMC genomics 2006, 7:198. 118. Zhao X, Guan JL: Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced drug delivery reviews 2011, 63(8):610-615. 119. Claesson-Welsh L, Welsh M: VEGFA and tumour angiogenesis. Journal of internal medicine 2013, 273(2):114-127. 120. Avraham HK, Lee TH, Koh Y, Kim TA, Jiang S, Sussman M, Samarel AM, Avraham S: Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. The Journal of biological chemistry 2003, 278(38):36661-36668. 121. Le Boeuf F, Houle F, Huot J: Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. The Journal of biological chemistry 2004, 279(37):39175-39185. 122. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N, Matsumoto T, Claesson-Welsh L, Welsh M: The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. The Journal of biological chemistry 2004, 279(21):22267-22275. 123. Masson-Gadais B, Houle F, Laferriere J, Huot J: Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell stress & chaperones 2003, 8(1):37-52. 124. Shen TL, Park AY, Alcaraz A, Peng X, Jang I, Koni P, Flavell RA, Gu H, Guan JL: Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. The Journal of cell biology 2005, 169(6):941-952. 125. Braren R, Hu H, Kim YH, Beggs HE, Reichardt LF, Wang R: Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. The Journal of cell biology 2006, 172(1):151-162. 126. Lee J, Borboa AK, Chun HB, Baird A, Eliceiri BP: Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma. Cancer research 2010, 70(24):10131-10140. 127. Gilmore AP, Romer LH: Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular biology of the cell 1996, 7(8):1209-1224. 128. Shiojima I, Walsh K: Role of Akt signaling in vascular homeostasis and angiogenesis. Circulation research 2002, 90(12):1243-1250. 129. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley LC: Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(28):9739-9744. 130. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR et al: Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008, 453(7195):662-666. 131. Leevers SJ, Vanhaesebroeck B, Waterfield MD: Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Current opinion in cell biology 1999, 11(2):219-225. 132. Qi JH, Claesson-Welsh L: VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Experimental cell research 2001, 263(1):173-182. 133. Dayanir V, Meyer RD, Lashkari K, Rahimi N: Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. The Journal of biological chemistry 2001, 276(21):17686-17692. 134. Im E, Kazlauskas A: Regulating angiogenesis at the level of PtdIns-4,5-P2. The EMBO journal 2006, 25(10):2075-2082. 135. Serban D, Leng J, Cheresh D: H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors. Circulation research 2008, 102(11):1350-1358. 136. Jiang BH, Liu LZ: PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in cancer research 2009, 102:19-65. 137. Suzuki A, Hamada K, Sasaki T, Mak TW, Nakano T: Role of PTEN/PI3K pathway in endothelial cells. Biochemical Society transactions 2007, 35(Pt 2):172-176. 138. Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ et al: Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. The Journal of clinical investigation 2005, 115(8):2119-2127. 139. Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, Byzova TV: Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nature medicine 2005, 11(11):1188-1196. 140. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA et al: Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer cell 2006, 10(2):159-170. 141. Ono K, Han J: The p38 signal transduction pathway: activation and function. Cellular signalling 2000, 12(1):1-13. 142. Rousseau S, Houle F, Landry J, Huot J: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997, 15(18):2169-2177. 143. McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM: Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. The Journal of biological chemistry 2005, 280(22):20995-21003. 144. Ilan N, Mahooti S, Madri JA: Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. Journal of cell science 1998, 111 ( Pt 24):3621-3631. 145. Kohmura K, Miyakawa Y, Kawai Y, Ikeda Y, Kizaki M: Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. Journal of cellular physiology 2004, 198(3):370-376. 146. Yang B, Cao DJ, Sainz I, Colman RW, Guo YL: Different roles of ERK and p38 MAP kinases during tube formation from endothelial cells cultured in 3-dimensional collagen matrices. Journal of cellular physiology 2004, 200(3):360-369. 147. Ridley AJ: Life at the leading edge. Cell 2011, 145(7):1012-1022. 148. Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M: 1''-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 2011, 32(6):904-912. 149. Sulpice E, Ding S, Muscatelli-Groux B, Berge M, Han ZC, Plouet J, Tobelem G, Merkulova-Rainon T: Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the cell / under the auspices of the European Cell Biology Organization 2009, 101(9):525-539. 150. Garrett TA, Van Buul JD, Burridge K: VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Experimental cell research 2007, 313(15):3285-3297. 151. Bryan BA, D''Amore PA: What tangled webs they weave: Rho-GTPase control of angiogenesis. Cellular and molecular life sciences : CMLS 2007, 64(16):2053-2065. 152. Cox DLNaMM: Lehninger: principle of biochamistry (forth edition). 2005:1062-1065. 153. Tanner W, Lehle L: Protein glycosylation in yeast. Biochimica et biophysica acta 1987, 906(1):81-99. 154. Cox DLNaMM: Lehninger: principle of biochamistry (forth edition). 2005:258-260. 155. Hart GW: Glycosylation. Current opinion in cell biology 1992, 4(6):1017-1023. 156. Herscovics A, Orlean P: Glycoprotein biosynthesis in yeast. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 1993, 7(6):540-550. 157. Cox DLNaMM: Lehninger: principle of biochamistry (forth edition). 2005:1068-1071. 158. Waechter CJ, Lennarz WJ: The role of polyprenol-linked sugars in glycoprotein synthesis. Annual review of biochemistry 1976, 45:95-112. 159. Elbein AD: Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC critical reviews in biochemistry 1984, 16(1):21-49. 160. Millard M, Odde S, Neamati N: Integrin targeted therapeutics. Theranostics 2011, 1:154-188. 161. Lennarz WJ: Glycoprotein synthesis and embryonic development. CRC critical reviews in biochemistry 1983, 14(4):257-272. 162. Struck D, and W. Lennarz.: The biochemistry of glycoproteins and proteoglycans: Plenum Publishing Corp., New York.; 1980. 163. Alton G, Hasilik M, Niehues R, P
摘要: 血管新生為在既有的血管中衍生出新血管的過程,在許多生理及病理過程中扮演重要的角色。血管內皮生長因子受器-2 (vascular endothelial growth factor receptor-2, VEGFR2)為存在於血管內皮細胞上的一種專一性酪胺酸激酶受器,與血管內皮細胞的增生、侵襲及移行能力有關。整合素β1 (integrin β1)為表現在細胞膜上的細胞黏附分子,對於內皮細胞的移行、增生以及分化為不可缺少的要件。2-去氧葡萄糖(2-deoxyglucose, 2-DG)為人工合成非代謝性葡萄糖類似物,它能與葡萄糖及甘露糖競爭,分別干擾糖解作用與蛋白質糖基化作用。研究指出,2-DG可藉由干擾蛋白質糖基化作用,導致內質網產生非摺疊蛋白反應(unfolded protein response),促使人類臍靜脈內皮細胞(human umbilical vascular endothelial cells, HUVECs)凋亡,而抑制血管新生。然而,2-DG的抗血管新生機制,包含是否可經由弱化VEGFR-2及整合素β1所調控的訊息傳遞路徑,而抑制血管內皮細胞降解基底膜、移行和分化能力,進而抑制血管新生,目前仍不清楚。因此,本研究利用大鼠動脈環與HUVECs細胞為試驗模式,探討2-DG對於大鼠動脈環新血管生成的作用,並利用HUVECs釐清其相關分子機制。結果顯示,大鼠動脈環與2-DG (0.05-1 mM)培養7天,可顯著抑制新血管的生成,其最佳濃度為1 mM,抑制率為40% (P < 0.05)。細胞試驗部分,以2-DG (0.1-1 mM)與HUVECs預培養24小時,可顯著抑制其脈管生成與細胞侵襲、移行及黏附能力,並且具有濃度效應,其最佳濃度為1 mM,抑制率分別為50%、58%、55%以及26% (P < 0.05)。此外,2-DG (1 mM)可顯著抑制VEGFR-2 mRNA與蛋白質表現量(同時蛋白分子量有向低分子量移動的趨勢)以及抑制整合素β1的蛋白質表現。分子機制部份,2-DG可顯著抑制VEGFR-2及整合素β1所調控的分子,包括: (1)黏著斑激酶(focal adhesion kinase, FAK)的磷酸化作用,而抑制磷脂肌醇激酶(phosphatidylinositide 3-kinases, PI3K)的蛋白質表現與絲胺酸激酶(Akt)的磷酸化作用,進而抑制Rho small GTPase (Rho及Rac)的蛋白質表現;(2) p38的磷酸化作用;(3)基質金屬蛋白酶-2 (matrix metalloproteinase-2, MMP-2) mRNA、蛋白質表現量與活性,以及(4)抑制基質金屬蛋白酶內生性抑制劑-2 (tissue inhibitor of metalloproteinase-2, TIMP-2)蛋白表現量。此外,甘露糖(2 mM)可顯著回復2-DG所抑制的脈管生成能力、MMP-2活性以及VEGFR-2與整合素β1的蛋白質表現。最後以免疫螢光染色法觀察2-DG對於VEGFR2在HUVECs中分布的影響,結果顯示2-DG (1 mM)與HUVECs預培養24小時後,會造成VEGFR2累積在細胞內質網上,而甘露糖(2 mM)可明顯逆轉VEGFR2的累積。以上結果指出,2-DG具有抑制血管新生的能力,其機制包含了弱化VEGFR2及整合素β1所調控的訊息路徑以及干擾蛋白質糖基化作用。
Angiogenesis, the process of vascular growth by sprouting of pre-existing vessels, plays an important role in many physiological and pathological processes. Vascular endothelial growth factor receptor-2 (VEGFR2) is a specific tyrosine kinase receptor and is involved in cell proliferation, invasion and migration in vascular endothelial cells. Intergrin β1, a cell adhesion molecule that is expressed on the endothelial cell surface, plays an important role in cell migration, proliferation, differentiation and survival of endothelium. 2-Deoxyglucose (2-DG), a synthetic non-metabolizable analogue of glucose, can interfere with glycolysis and N-linked glycosylation by competition with glucose and mannose metabolism, respectively. The interference of 2-DG with N-linked glycosylation has been shown to induce unfolded protein response in endoplasmic reticulum resulting in promotion of apoptosis and inhibition of angiogenesis in human umbilical vascular endothelial cells (HUVECs). However, the anti-angiogenic mechanisms of 2-DG are not well-investigated, it is unclear whether the anti-angiogenic activity of 2-DG is related to VEGFR2- and integrin β1-mediated pathways involved in extracellular matrix (ECM) degradation, cell migration and differentiation in vascular endothelial cells. In this study, we employed an ex vivo rat aortic rings assay to substantiate the anti-angiogenic action of 2-DG and investigated the molecular mechanism underlying such actions in HUVECs. Results reveal that rat aortic rings treated with 2-DG (0.05-1 mM) for 7 d resulted in a significant inhibition of new blood formation, with an inhibition of 40% (P < 0.05) at 1 mM of 2-DG. 2-DG (0.1-1 mM) also significantly inhibited tube formation, invasion, migration and adhesion of HUVECs in a concentration-dependent manner at 24 h of incubation, with an inhibition of 50%, 58%, 55% and 26% (P < 0.05) at 1 mM 2-DG, respectively. In addition, 2-DG significantly inhibited mRNA and protein expression of VEGFR2 as well as protein expression of integrin β1. Meanwhile, VEGFR2 tended to shift to low molecular weight position by 2-DG treatment. Mechanistically, 2-DG significantly inhibited VEGFR2- and integrin β1-mediated signaling pathways, such as: (1) phosphorylation of focal adhesion kinase (FAK) followed by attenuated PI3K-Akt axis, leading to inhibited protein expression of Rho small GTPase (Rho and Rac1); (2) phosphorylation of p38; (3) mRNA, protein expression and activity of matrix metalloproteinase-2 (MMP-2) and (4) protein expression of tissue inhibitor of metalloproteinase-2 (TIMP-2). In addition, mannose (2 mM) reversed the effects of 2-DG on tube formation, MMP-2 avtivity as well as on VEGFR2 and integrin β1 protein expression in HUVECs. We then employed immunofluorescence assay to illustrate the effects of 2-DG on VEGFR2 distribution in HUVECs. Results reveal that pre-incubation of HUVECs with 2-DG (1 mM) for 24 h clearly induced accumulation of VEGFR2 on endoplasmic reticulum, whereas co-incubation with mannose (2 mM) significantly reversed such an accumulation. In conclusion, the present study demonstrats that 2-DG has anti-angiogenic activity which involves attenuating of VEGFR2- and integrin β1-mediated signaling pathways as well as interference of N-linked glycosylation.
URI: http://hdl.handle.net/11455/52123
其他識別: U0005-1908201311414100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201311414100
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.