Please use this identifier to cite or link to this item:
標題: 小球藻穀氧還原蛋白結構與生化特性分析
Structural and functional relation analysis of glutaredoxin from Chlorella sorokiniana T89
作者: 陳亭妏
Chen, Ting-Wen
關鍵字: 小球藻
structural and functional relation
出版社: 食品暨應用生物科技學系所
引用: 1. Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V. and Jackson, R. B. (2010), Cambell Biology, 9th ed: 591–592, 1157 2. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006), “Commercial applications of microalgae” , Journal of Bioscience and Bioengineering, 101 (2): 87–96 3. Jensen, G. S., Ginsberg, D. I. and Drapeau, C. (2001), “Blue-green algae as an immuno-enhancer and biomodulator”, J Amer Nutraceut Assoc, 3 (4):24–30 4. Kay, R. A. and Barton, L. L. (1991), “Microalgae as food and supplement”, Critical Reviews in Food Science and Nutrition, 30 (6): 555–573 5. Guil-Guerrero, J.L., Navarro-Juarez, R., Lopez-Martinez, J.C., Campra-Madrid, P. and Rebolloso-Fuentes, M. (2004) , “Functional properties of the biomass of three microalgal species”, Journal of Food Engineering, 655: 511–517 6. Becker, W. (2004), “Microalgae in human and animal nutrition”, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 18: 312–351 7. Spoehr, H. A. (1951), “Chlorella as a source of food”, Proceedings of the American Philosophical Society, 95 (1): 62–67 8. Belasc, W. (1997), “Algae burgers for a hungry world? The rise and fall of Chlorella cuisine”, Technology and Culture, 38 (3): 608–634 9. Burlew, J. S. (1953), Alga culture from laboratory to pilot plant: 20 10. Powell, R. C., Nevels, E. M. and McDowell, M. E. (1961), “Algae feeding in humans”, Journal of Nutrition, 75 (61): 7–9 11. Chisti, Y. and Yan, J. (2011), “Energy from algae: Current status and future trends algal biofuels – A status report”, Applied Energy, 88: 3277–3279 12. Chisti, Y. (2007), “Biodiesel from microalgae” , Biotechnology Advances, 25: 294–306 13. Mallick, N., Mandal, S., Singh, A. K., Bishai, M. and Dash, A. (2012), “Green microalga Chlorella vulgaris as a potential feedstock for biodiesel” , Journal of Chemical Technology and Biotechnology, 87: 137–145 14. Cuaresma, M., Janssen, M., Vilchez, C. and Wijffels, R. H. (2009), “Productivity of Chlorella sorokiniana in a short light-path(SLP) panel photobioreactor under high irradiance”, Biotechnology and Bioengineering, 104 (2): 352–359 15. Kessler, E. (1985), “Upper limits of temperature for growth in Chlorella”, Plant Systematics and Evolution,151: 67–71 16. Kessler, E. (1978), “Physiological and biochemical contributions to the taxonomy of the genus Chlorella”, Archives of Microbiology, 119: 13–16 17. Kumar, K. and Das, D. (2012), “Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors”, Bioresource Technology, 116: 307–313 18. 林榮芳、黃檀溪(2002),比較耐熱性小球藻異營生長之特性,師大學報:數理與科技類,47 (1):31–40 19. Gill, S. S. and Tuteja, N. (2010), “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants” , Plant Physiology and Biochemistry, 48: 909–930 20. Machlin, L. J. and Bendich, A. (1987), “Free radical tissue damage: protective role of antioxidant nutrients”, The FASEB Journal, 1: 441–445 21. Beckman, K. B. and Ames, B. N. (1998), “The free radical theory of aging matures”, Physiological Reviews, 78 (2): 547–581 22. Cadenas, E. and Davies, K. J. A. (2000), “Mitochondrial free radical generation, oxidative stress ,and aging”, Free Radical Biology & Medicine, 29 (3/4): 222–230 23. Adler, V., Yin, Z., Tew, K. D and Ronai, Z. (1999), “ Role of redox potential and reactive oxygen species in stress signaling”, Oncogene, 18: 6104 –6111 24. Holmgren, A. (1989), “Thioredoxin and glutaredoxin systems”, The Journal of Biological Chemistry, 264 (24): 13963–13966 25. Prinz, W. A., Aslund, F., Holmgren, A. and Beckwith, J. (1997), “The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm”, The Journal of Biological Chemistry, 272 (25): 15661–15667 26. Holmgren, A., Johansson, C., Berndt, C., Lonn, M. E., Hudemann, C. and Lillig, C. H. (2005), “Thiol redox control via thioredoxin and glutaredoxin systems” , Biochemical Society Transactions, 33 (6): 1375–1377 27. Holmgren, A. (1979), “Glutathione-dependent synthesis of deoxyribonucleotides Characterization of the enzymatic mechanism of Escherichza coli gultaredoxin”, The Journal of Biological Chemistry, 254 (9): 3672–3678 28. Aslund, F., Nordstrand, K., Berndt, K. D. (1996), Nikkola, M., Bergman, T., Ponstingl, H., Jornvall, H., Otting, G., and Holmgren, A., “Glutaredoxin-3 from Escherichia coli amino acid sequence, 1H and 15N NMR assignments, and structural analysis”, The Journal of Biological Chemistry, 217 (16): 6736–6745 29. Nordstrand, K., Aslund, F., Holmgren, A., Otting, G. and Berndt, K. D. (1999), “NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: implications for the enzymatic mechanism”, Journal of Molecular Biology, 286: 541–552 30. Holmgren, A. (1979), “Glutathione-dependent synthesis of deoxyribonucleotides purification and characterization of gultaredoxin from Escherichza coli”, The Journal of Biological Chemistry, 254 (9): 3664–3671 31. Rouhier, N., Couturier, J., Johnson, M. K. and Jacquot, J. (2010), “Glutaredoxins: roles in iron homeostasis”, Trends in Biochemical Sciences, 35 (1): 43–52 32. Holmgren, A. and Aslund, F. (1995), “Glutaredoxin” , Methods in Enzymology, 252 (29): 283–292 33. Aslund, F., Ehn, B., Miranda-Vizuete, A., Pueyo, C. and Holmgren, A. (1994), “Two additional glutaredoxins exist in Escherichia coli: Glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant”, Proceedings of the National Academy of Sciences, 97: 9813–9817 34. Lillig, C. H., Berndt, C. and Holmgren, A. (2008), “Glutaredoxin systems”, Biochimica et Biophysica Acta, 1780: 1304–1317 35. Sun, C., Berardi, M. J. and Bushweller, J. H. (1998), “The NMR solution structure of human glutaredoxin in the fully reduced form”, Journal of Molecular Biology, 280: 687–701 36. Nelson, D. L. and Cox, M. M. (2008), Lehninger Principles of Biochemistry, 5th ed: 122 37. Sreerama, N., Venyaminov, S. Y.U. and Woody, R. W. (1999), “Estimation of the number of α-helical and β-strand segments in proteins using circular dichroism spectroscopy”, Protein Science, 8: 370–380 38. Schagger, H. (2006), “Tricine–SDS-PAGE”, Nature Protocols, 1 (1): 16–22 39. 鄭竹螢(2012),小球藻榖氧還蛋白選殖與生化特性分析,國立中興大學生命科學院研究所碩士學位論文 40. Vlamis-Gardikas, A., Aslund, F., Spyrou, G., Bergman, T. and Holmgren, A. (1997), “Cloning, overexpression, and characterization of glutaredoxin 2, an atypical glutaredoxin from Escherichia coli”, The Journal of Biological Chemistry, 272 (17): 11236–11243 41. Johansson, C., Lillig, C. H. and Holmgren, A. (2004), “Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinityaccepting electrons from either glutathione or thioredoxin reductase”, The Journal of Biological Chemistry, 279 (9): 7537–7543 42. Discola, K., Oliveira, M., Cussiol, J., Monteiro, G., Barcena, J., Porras, P., Alicia Padilla, C., Guimaraes, B. and Netto, L. (2009), “Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae”, Journal of Molecular Biology, 385: 889–901 43. Ken, C.-F., Lin, C.-Y., Jiang, Y.-C., Wen, L. and Lin, C.-T. (2009), “Cloning, expression, and characterization of an enzyme possessing both glutaredoxin and dehydroascorbate reductase activity from Taiwanofungus camphorata”, Journal of Agricultural and Food Chemistry, 57: 10357–10362 44. Gao, X.-H., Zaffagnini, M., Bedhomme, M., Michelet, L., Cassier-Chauvat ,C. , Decottignies, P. and Lemaire, S. D. (2010), “Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: Kinetics and specificity in deglutathionylation reactions”, FEBS Letters, 584: 2242–2248 45. 粘值菀(2012),(一)綠藻 (Chlorella sorokiniana T-89) glutaredoxin的晶體結構分析(二)Picrophilus torridus海藻糖合成酶的晶體結構解析與活性分析,國立中興大學生命科學院研究所碩士學位論文
摘要: 小球藻Chlorella sorokiniana T89(CsT89)之抗氧化酵素—穀氧還原蛋白(Glutaredoxin, Grx)已被成功選殖並且完成生化特性分析。為了進一步瞭解其結構與生化特性間之相關性,本實驗將小球藻穀氧還原蛋白之榖胱甘肽(glutathione, GSH)結合位以及保留性序列之胺基酸位置進行點突變,並針對其結構與催化活性之關係作探討。 實驗設計七個突變位置,共十二個點突變重組蛋白rCsT89 GrxK22R、rCsT89 GrxIQ5859TK、 rCsT89 GrxQ59K、rCsT89 GrxQ59N、rCsT89 Grx68PV、rCsT89 GrxS70T、rCsT89 GrxG84A、rCsT89 GrxG84N、rCsT89 GrxG84T、rCsT89 GrxG84Y、rCsT89 GrxD85E與rCsT89 GrxD85T,以蛋白質表現宿主E. coli BL21(DE3)誘導表現,rCsT89 GrxK22R、rCsT89 GrxQ59K、rCsT89 GrxS70T、rCsT89 GrxG84A、rCsT89 GrxG84Y、rCsT89 GrxD85E與rCsT89 GrxD85T等七個重組蛋白,可大量表現可溶性蛋白質,經由金屬離子親和性管柱純化上述目標重組蛋白,並利用HED (β-hydroxyethyl disulfide) assay進行生化特性分析,結果顯示各個點突變重組蛋白其最適反應pH值為pH 8.5-9;最適反應溫度介於40-55°C;rCsT89 GrxG84A以及rCsT89 GrxD85E之酵素活性略高於rCsT89 Grx之活性,而rCsT89 GrxK22R、rCsT89 GrxQ59K、rCsT89 GrxG84Y以及rCsT89 GrxD85T活性則降至CsT89 Grx之一半,rCsT89 GrxQ59N與rCsT89 GrxS70T活性僅剩約20%。進一步分析點突變重組蛋白之酵素動力學rCsT89 GrxQ59K、rCsT89 GrxG84A與rCsT89 GrxD85E之kcat與Km值皆上升,然而rCsT89 GrxD85T則是kcat值下降且Km值上升。實驗亦發現rCsT89 Grx突變成rCsT89 GrxK22R與rCsT89 GrxG84Y時會使酵素穩定性下降,影響實驗之再現性。
The gene of glutaredoxin (Grx) from Chlorella sorokiniana T89 (CsT89) has been cloned and overexpressed successfully in E. coli. The recombinant protein was biochemically characterized. In order to realize the structural and functional relation, in this study, based on the glutathione (GSH) binding sites and conserved residues of glutaredoxin, 12 single point mutations were designed from CsT89 Grx. Twelve mutations were designed as the following rCsT89 GrxK22R, rCsT89 GrxIQ5859TK, rCsT89 GrxQ59K, rCsT89 GrxQ59N, rCsT89 Grx68PV, rCsT89 GrxS70T, rCsT89 GrxG84A, rCsT89 GrxG84N, rCsT89 GrxG84T, rCsT89 GrxG84Y, rCsT89 GrxD85E and rCsT89 GrxD85T. The protein expressions of recombinant mutant glutaredoxins were induced by the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) in E. coli BL21(DE3). Target recombinant soluble proteins were purified by TALONR metal affinity resin and analyzed by 16% tricine SDS-PAGE. The activities of recombinant mutant glutaredoxins were determined by the HED (β-hydroxyethyl disulfide) assay. The optimal reaction pH and temperature of recombinant mutant glutaredoxins were pH 8.5-9 and 40-55°C, respectively. Compare with rCsT89 Grx activity, CsT89 GrxG84A and rCsT89 GrxD85E activities were slightly higher; rCsT89 GrxK22R, rCsT89 GrxQ59K, rCsT89 GrxG84Yand rCsT89 GrxD85T activities were less than 50% of CsT89 Grx activity; activities of rCsT89 GrxQ59N and rCsT89 GrxS70T were only remaining 20% of rCsT89 Grx. Analyze the kinetic studies of recombinant mutant glutaredoxins, both kcat and Km of rCsT89 GrxQ59K, rCsT89 GrxG84A and rCsT89 GrxD85E have elevated. However, kcat of rCsT89 GrxD85T has declined and Km has increased. Furthermore, rCsT89 Grx was mutated to rCsT89 GrxK22R and rCsT89 GrxG84Y caused the low stability of recombinant proteins and effected the reproducibility of experiments.
其他識別: U0005-2207201313033100
Appears in Collections:食品暨應用生物科技學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.