Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5223
標題: 藍綠菌最佳產氫生理條件及其反應器操作之研究
Hydrogen production by Cyanobacteria: physiological control and lab-scale reactor operation.
作者: 范欣惠
Fan, Shin-Hui
關鍵字: Hydrogen production
氫氣
cyanobacteria
fructose
physiological control
藍綠菌
果糖
生理控制
出版社: 環境工程學系所
引用: 中國新能源網 http://www.newenergy.org.cn/(最近更新日期2006/03/19) 李孟洲。以微藻生產氫氣作為再生能源。海洋大學水產養殖研究所博士論文 http://ind.ntou.edu.tw/~b0232/hydrogen.htm 科學中國人。2003。第八期 能源危機 環保生活資訊網 http://gaia.idv.tw/gaia/index.htm(最近更新日期2006/02/23) 陳伯中。1986。藻類與能源。藻類之研究與應用研討會論文集。台北。第67-76頁。 許錦龍。念珠藻(Anabaena)固氮作用之生理特性之研究。國立中興大學植物研究所碩士論文。第19-22頁。 張時雨。2003。碳源對藍綠菌Anabaena CH1、CH2、CH3光合產氫能力影響之研究。國立中興大學環境工程研究所碩士論文。 新華網http://www.xinhuanet.com(最近更新日期2006/07/11) 環球時報。2006/06/30 第十五版。 氣候變化綱要公約全球資源網 http://sd.erl.itri.org.tw/fccc/(工業技術研究院能源與資源研究所) Adhikary, S.P. (1998) Polysaccharides from mucilaginous envelope layers of cyanobacteria and their ecological significance. Journal of Scientific & Industrial Research 57, 454-466. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology 98,114-120. Appel, J., Phunpruch, S., Steinmuller, K. & Schulz, R. (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 work as an electron valve during photosynthesis. Archives of Microbiology 173, 333-338. Apte, S.K. & Bhagwat, A.A. (1989) Salinity-stress-induced proteins in two nitrogen fixing Anabena strains differentially tolerant to salt. Journal of Bacteriology 171, 909-915. Apte, S. K. (1996) Inter-relationship between photosynthesis and nitrogen fixation in cyanobacteria. Journal of Scientific & Industrial Research 55, 583-595. Axellson, R., Oxelfelt, F., and Lindblad, P. (1999) Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiology Lett. 190, 77-81. Barak, R., Nur, I., Okun, Y. & Henis, Y. (1982) Aerotactic response of Azospirillum brasilense. Journal of Bacteriology 152, 643-649 Bagchi, S.N., Ernst, A. & Boger, P. (1991) The e€ect of activated oxygen species of nitrogenase of Anabaena variabilis. Zeitschrift foÈr. Naturforschung 46, 407-415. Biotech Fontos Mikroorganizmus Csoportok http://biotech.szbk.u-szeged.hu/KK_Jegyzet/mikrobi2.html Bone, D.H. (1971) Kinetics of synthesis of nitrogenase in batch and continuous culture of Anabena flos-aquae. Archiv fur Mikrobiologie 80, 242-251. Boison G., Bothe H., Hansel A., Lindblad P. (1999) Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria. FEMS Microbiol Lett 174, 159-165. Böhm, I., Halbherr, A., Smaglinski, S., Ernst, A., and Böger, P. (1992) In vitro activation of binitrogenase reductase from the cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 174, 6179-6183. Brass, S., Ernst, A., and Böger, P. (1992) Induction and modification of dinitrogenase reductase in the unicellular cyanobacterium Synechocystis BO 8402. Arch. Microbiol. 158, 422-428. Chen, P.C. (1986) Alteration of nitrogenase activity of Anabena CH1 and CH2 during light-dark transition. Chinese Journal of Micro- biology and Immunology 19, 36-41. Datta Madamwar, Nikki Garg and Vishal Shah (2000) Review of Cyanobacterial hydrogen production. World Jounal of Microbiology & Biotechology 16,757-767. Dantos M. Hydrogen producing Bacteria: energy source for the 21st century Michigan State University. http://www.cem.msu.edu/~cem181fp/bioenergy(最近更新日期1999/12/10) Dutta Debajyoti Debojyoti De, Surabhi Chaudhuri and Sanjoy K Bhattacharya (2005) Hydrogen production by Cyanobacteria – review. Microbial Cell Factories4, 36. Du, C., and Gallon, J. R. (1993) Modification of the Fe-protein of the nitrogenase of Gloeothece(Nägeli)sp. ATCC 27152 during growth under alternation light and darkness. New Phytol. 125, 121-129. Durner, J., BöHm, I., Knörzer, O. C., and Böger, P. (1996) Proteolytic degradation of denitrogenase reductase from Anabaena variabilise ATCC 29413 as a consequence of ATP depletion and impact of oxygen. J. Bacteriol. 178, 606-610. Ernst, A., Kerfin, W., Spiller, H. & Boger, P. (1979) External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Zeitschrift fur Naturforschung 34, 820-825. Francis, K, Patel, P, Wendt, J. C., and Shanmugam, K. T. (1990) Purification and characterization of two from of hydrogenase Isoenzyme I from Escherichia coli. J. Bacteriol. 172, 5750-5757. Fresnedo, O., Gomez, R. & Serra J.L. (1991) Carotenoid composition in the cyanobacterium Phormidium laminosum. Effect of nitrogen starvation. FEBS Letters 282, 300-304. Fernando A. Lopes Pinto (2002) International Journal of Hydrogen Energy 27, 1209-1215. Fredriksson, C. & Bergmann, B. (1995) Nitrogenase quantity varies diurnally in a subset of cells within colonies of the nonheterocystous cyanobacterium Trichodesmium sp. Microbiology 141, 2471-2478. Gallon, J.R. & Hamadi, A.F. (1984) Studies on the effects of oxygen on acetylene reduction (nitrogen fixation) in Gloeothece sp. ATCC 27152. Journal of General Microbiology 130, 495-503. Gallon RJ (1992) Reconciling the incompatible: N2 fixation and O2. Tansley review no. 44. New Phytol 122, 571-609. Glazer, A. N., Hatch , M. D. and H. K. Boardman (1981) Photosynthetic Accessory Protein with Billin Prothetic Group. The Biochemistry of Plants vol. 8, photosynthesis, Academic Press, New York. Grilli, C.M., Canini, A., Galiazzo, F. & Rotilio, G. (1991) Superoxide dismutase in vegetative cells, heterocysts and akinites of Anabena cylindrica Lemm. FEMS Microbiology Letters 80, 161-166. Hallenback, P.C., Kochian, L.V., Weissmann, J.C. & Benemann, J.R. (1978) Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica. Biotechnology and Bioengineering Symposium 8, 283-297. Happe T., Naber JD (1993) Isolation, characterization and amino acid sequence of hydrogenase from the green algae chlamydomonas reinhardtii, Eur J Biochem 214, 475-478. Huang, T.C., Tu, J., Chow, T.J. & Chen T.S. (1990) Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiology 92, 531-533. Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta. 768, 227-255. Ida Akkerman, M. Janssen, J. M. S. Rocha, J. H. Reith and R. H. Wijffels (2003) Photobiological hydrogen production: Photochemical efficiency and bioreactor design, In Bio-methane and Bio-hydrogen, J. H. Reith, R. H. Wijffels and H. Barten, ed. (Dutch Biological Hydrogen Fundation), pp.124-145 J. H. Reith, R. H. Wijffels and H. Barten (2003) Bio-methane & Bio-hydrogen Kaplan, S. & C. J. Arntzen and Govindjee, A.(1982) Photosynthetic Structure and function. Photosynthesis, vol. 1, Academic Press, New York. Kathrin Schütz, Tomas Happe, Olga Troshina, Peter Lindblad, Elsa Leitão, Paulo Oliveira, Paula Tamagnini (2004) Cyanobacteril H2 production- a comparative analysis. Planta, 218, 350-359. Kim, J. & Rees, D.C. (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33, 389-397. Kentemich, T., Dannenberg, G., Hundeshagen, B. & Bothe, H. (1988) Evidence for the occurring of the alternative vanadium-containing nitrogenase in the cyanobacterium Anabena variabilis. FEMS Microbiology Letters 51, 19-24. Kentemich, T., Haverkamp, G. & Bothe, H. (1991) The expression of a third nitrogenase system in the cyanobacterium Anabena variabilis. Zeitschrift fur Naturforschung 46, 217-222. Kojima, E. & Yamaguchi, Y. (1988) Photoproduction of hydrogen by adapted cells of Chlorella pyrenoidosa. Journal of Fermentation Technology 66, 19-25. Kosaric, N. & Lyng, R.P. (1988) Microbial production of hydrogen. In Biotechnology, Vol 6b, eds. H.J. Rehm & G. Reed. pp. 101-136. Weinheim: VCH Verlagsgesellschaft. Lewis K., (1966) Symposium on Bioelectrochemistry of Microorganisms IV. Biochemical Fuel Cells. Bacteriol. Rev., 30: 101-113. Lambert, G. R., and Smith, G. D. (1977) Hydrogen formation by marine blue-green algae. FEBS Lett. 83, 159-162. Lambert, G. R., and Smith, G. D. (1981) The hydrogen metabolism of cyanobacteria(blue-green algae). Biol. Rev. 56: 589-660. Lichtl, R. R., Michael, J. B., and Dabid, O. Hall. (1997) The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat condition. Appl. Microbiol. and Biotechnol. 47, 701-707 Mackey, E.J. & Smith, G.D. (1983) Adaptation of the cyanobacterium Anabena cylindrica to high oxygen tensions. FEBS Letters 156,108-112. Mckee, T., and McKee, J. R.: 1999 Biochemistry: an introduction. 2nd ed. McGraw-Hill Book Co., New York. 329-365. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in green alga Chlamydomonas reinhardtii. Plant Physiol; 122(1), 127-135. Misra, H.S. & Tuli, R. (2000) Differential expression of photosynthesis and nitrogen fixing genes in the cyanobacterium Plectonema boryanum. Plant Physiology 123, 731-736. Mitsui, A., Matsunaga, T., Ikemoto, H. & Renuka, B.R. (1985) Organic and inorganic waste treatment and simultaneous photoproduction of hydrogen by immobilized photosynthetic bacteria. Developments in Industrial Microbiology 26, 209-222. Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H., Cao, S. & Arai, T. (1986) Stratergy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, London 323, 720-722. Miyake, C., Michihata, F. & Asada, K. (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: Acquisition of ascorbate peroxidase during evolution of cyanobacteria. Plant Cell Physiology 32, 33-43. Miyamoto, K., Nawa, Y., Matsuoka, S., Ohta, S. & Miura, Y. (1990) Mechanism of adaptation and H2 photoproduction in a marine green alga, Chlamydomonas sp. MGA 161. Journal of Fermentation and Bioengineering 70, 66-69. Newton, R.P., Walton, T.J. &Moyse, C.D. (1977) Non-α-tocopherols in the unicellular blue-green alga Gleocapsa. Biochemical Society Transactions 5, 1486-1489. Neuer, G. & Bothe, H. (1985) Electron donation to nitrogenase in heterocysts of cyanobacteria. Archives of Microbiology 143, 185- 191. Paerl, H.W. & Prufert, L.E. (1987) Oxygen poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Applied and Environmental Microbiology 53, 1078-1087. Paerl, H.W. & Carlton, R.G. (1988) Control of nitrogen fixation by oxygen depletion in surface associated microzones. Nature, London 332, 260-262. Paerl, H.W., Prufert, L.E. & Ambrose, W.W. (1991) Contemporaneous N2 fixation and oxygenic photosynthesis in the nonheterocystous mat-forming cyanobacterium Lyngbya aestuarii. Applied and Environmental Microbiology 57, 3086-3092. Patel, S. & Madamwar, D. (1994) Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum. International Journal of Hydrogen Energy 19, 733-738. Peter Fay (1992) Oxygen Relations of Nitrogen Fixation in Cyanobacteria. Microbiologicak Reviews 56(2), 340-373. Philips, E. J. & Mitsui, A. (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG-7. Applied and Environmental Microbiology 45, 1212-1220. Philippis, R.D., Margheri, M.C., Materassi, R. & Vincenzini, M. (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Applied and Environmental Micro- biology 64, 1130-1132. Prabaharan, D., and Subramanian G. (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresource Technol. 57, 111-116. Rai, A.K. & Abraham, G. (1995) Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabena doliolum. Journal of Applied Bacteriology 78, 501-506. Ramos, J. L., and Guerrero, M. G. (1983) Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Arch. Microbiol. 136, 81-83. Ramos, J. L., Madeno, F., and Guerrero, M. G. (1985) Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Arch. Microbiol. 141, 105-111. Reith J. H., Wijffels R. H. and Barten H. (2003) Bio-methane & Bio-hydrogen Reddy P. M., Spiller H., Albrecht S. L. and Shanmugam K. T. (1996) Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing Cyanobacterium, Anabaena variabilist. A.E.M. Apr. 1996, 1220-1226. Reedy, K.J., Haskel, J.B., Sherman, D.M. & Sherman, L.A. (1993) Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. Journal of Bacteriology 175, 1284-1292. Richard Rocheleau (1996 - 2000) Biohydrogen production final summary report.Report to the U.S. dept. of energy hydrogen program Hawaii Natural Energy Institute, University of Hawaii; Robson, R. L. & Postgate J. R. (1980) Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbiology 34, 183-207. Sangeeta Dawar, P. Mohanty and B. K. Behera (1999) Sustainable hydrogen production in the Cyanobacterium Nostoc sp. ARM 411 grown in fructose- and magnesium sulphate-enriched culture. World Journal of Microbiology & Biotechnology 15, 289-292. Schneegurt, M.A., Tucker, D.L., Ondr, J.K., Sherman, D.M. & Sherman, L.A. (2000) Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, heterotrophically grown in continuous dark. Journal of Phycology 36, 107-117. Serebryakova, L. T., Sheremetieva, M. E., and Lindblad, P. (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol. Biochem. 38, 525-530. Shah, V., Garg, N. & Madamwar, D. (1999) Exopolysaccharide production by a marine cyanobacterium Cyanothece sp. Applica- tion in dye removal by its gelation phenomenon. Applied Bio- chemistry and Biotechnology 82, 81-90. Shah,V., Garg, N. & Madamwar, D. (2000) Characterization of the extracellular polysaccharide produced by a marine cyanobacterium cyanothece sp. and its exploitation toward metal removal from solutions. Current Microbiology 40, 274-278 Shah, V., Garg, N., and Madamwar, D. (2001) Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol. Lett. 194, 71-75. Smith, R. L., Van-Baalen C., and Tabita, F. R. (1990) Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. Strain CA(ATCC 33047). J. Bacteriol. 172, 2788-2790. Solar Lighting for Growth of Algae in a Photobioreactor, Oak Ridge National Laboratory and Ohio University(最近更新日期2002/12/30) http://www.ornl.gov/sci/solar/poster1txt.htm Stal, L.J. & Krumbein, W.E. (1985) Oxygen protection of nitrogenase in the aerobically nitrogen fixing, non-heterocystous cyanobacterium Oscillatoria sp. Archives of Microbiology 143, 72-76. Stamm, H., van Verseveld, W., de Vrives, W., and Stouthammer, A. H. (1984) Hydrogen oxidation and efficiency of nitrogen fixtation in succinate-limited chemostat cultures of Rhizobium ORS 571. Arch. Microbiol. 139, 53-60. Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P. (1996) Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413: Effects of Hydrogen and Organic Substrate. Current Microbiol. 33, 11-15. Tsygankov A. A., Fedorov A. S., Kosorov S. N. and Rao K. K. (2001) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering 80(7), 777-783. U.N. Intergovernmental Panel on Climate Change: Third Assessment Report, Climate Change 2001: The Scientific Bass-Summary for policymaker, July 2001. Vyas, D., and Kumar, H. D. (1995) Nitrogen fixation and hydrogen uptake in four cyanobacteria. Int. J. Hydrogen Energy. 20, 163-168. Vijayaraghvan K., Mohd Amin Mohd Soom (2004) Trend in biological hydrogen production- a review. International Journal of Hydrogen Energy Yehuda Cohen, Michael Gurevitz. The Cyanobacteria- Ecology, Physiology, and Molecular Genetics. http://141.150.157.117:8080/prokPUB/chaphtm/098/COMPLETE.htm Zajic, J. E., Kosaric, N., and Brosseau, J. D.(1978) Microbial production of hydrogen. Adv. Biochem. Eng. 9: 57-109.
摘要: 近年來研究發現固氮藍綠細菌具有利用有機物作為碳源的產氫能力,其中以添加果糖產氫情形最為顯著。故本實驗擬找出最適合產生氫氣的生長階段,將Anabaena sp. CH1及CH3生長曲線之對數生長期後期至靜止期間細分成4個stages,探討各階段細胞對產氫的影響,以期獲得最佳產氫能力之細胞。此外,並試驗最佳光照強度以及果糖添加濃度,並將反應體積擴大至1 L,觀察藍綠菌產氫情形以提升反應器效能。 結果顯示菌株CH1及CH3產生氫氣最佳生長階段分別為對數生長期後期的stage 4及stage 3。當光強度由3000 lux增加到6000 lux可提升菌株CH1及CH3 之1.6及2倍產氫速率,促進48%及26%的最大累積氫氣產量。果糖添加濃度由1000增加至2000 ppm可促進15%氫氣產量,且果糖濃度增加至4000 ppm並未對藍綠菌產氫造成抑制。隨後在擴大體積至1L試驗中觀察到氧氣抑制情形,故嘗試不同控制氧氣方法,期能以連續曝氬氣的方式克服,並增加果糖添加濃度以促進產氫效率。結果顯示增加果糖添加濃度會使pH值快速下降而縮短產氫時間,最後以500 ml批次試驗證實光照強度對藍綠菌產氫的影響,在光照強度及攪拌不足的條下反應走向產生氧氣及有機酸限制藍綠菌產氫,故建議改善反應槽設計以及設置內部光源如光纖,此外添加果糖方式應為逐次少量並控制pH值,以促進藍綠菌產氫效率。
Previous studies have indicated that nitrogen-fixing cyanobacteria have ability to utilize solar as the energy source and have simple nutrient requirement for biomass synthesis. Moreover, under anaerobic and nitrogen-free conditions, they can use sugars as carbon source to produce hydrogen, which is the most friendly and potential future fuel. However, oxygen is produced in photosynthesis and it is an inhibitor of the enzyme nitrogenase and hydrogenase. For the purpose of increasing the production of hydrogen and decreasing the production of oxygen, we choose the cells to produce hydrogen in late-log growth phase and try to find the optimum hydrogen production stage of late-log phase. Furthermore, we try to improve hydrogen production efficiency by increasing light intensity and fructose concentration in 60 ml batch. Then, for enhancing hydrogen yield, we use 1 L reactor to raise-up working volume. The results showed that the best hydrogen production stage of late-log phase for Anabaena sp. CH1 and CH3 were stage 4 and stage 3, respectively. On the other hand, increasing light intensity enhanced hydrogen production efficiency of 1.6 and 2-fold. When fructose concentration was increased from 1000 ppm to 2000 ppm, the hydrogen yield improvement was of 15%. In 1 L reactor, oxygen was produced and was overcome by continuous flushing with pure Ar, but still not got the good hydrogen yield. Finally, 500 ml batch tests proved that the light intensity were be the most important factor that influenced the hydrogen production of cyanobacteria.
URI: http://hdl.handle.net/11455/5223
其他識別: U0005-2808200611494700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200611494700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.