Please use this identifier to cite or link to this item:
標題: 環糊精對鐵活化過硫酸鹽氧化氯化有機溶劑影響之探討
Cyclodextrins mediated iron activated persulfate oxidation of chlorinated solvents
作者: 黃秋芬
Huang, Chiu-Fen
關鍵字: In situ chemical oxidation
Advanced oxidation technology
Trichl- oroethylene
出版社: 環境工程學系所
引用: 中文參考文獻 金相燦,1998. 環境毒性有機物污染化學,淑馨出版社。 經濟部工業局,2005. 印刷電路板業土壤及地下水污染預防與整治技術手冊。 盧至人譯,1998. 地下水的污染整治,國立編譯館出版社。 王建明,2003. Cyclodextrins對phenanthrene溶解度和微生物可利用度上的影響,環境工程學會第十五屆年會及研討會論文摘要集。 陳世裕,2002. 環糊精增進電動力技術處理受重金屬或低極性有機污染土壤之研究,輔英科技大學補助專體研究計劃成果報告。 陳世裕,賴進興等人,2004. 環糊精應用於淋洗整治受有機物污染土壤之研究,行政院國科會補助專體研究計劃成果報告,NSC92-2211-E-242-007。 陳國興,2001. 利用毛細管環糊精修飾區帶電泳法對啡噻類化合物之遷移行為與分離之研究,國立臺灣大學化學研究所碩士論文。 鄧名志,2003. 環糊精及膠體穩定度對整體毛細管柱製備之研究,國立成功大學化學研究所碩士論文。 行政院勞委會,2004. 物質安全資料表。 行政院環保署,1996. 毒性化學物質資料庫,三氯乙烯。 行政院環保署,2001. 毒性化學物質資料庫,四氯乙烯。 行政院環保署,2005. 飲用水水質標準法。 行政院環保署,2006. 土壤及地下水污染整治基金管理委員會/場址資訊/列管場址查詢。 行政院環保署,2006. 土壤及地下水污染整治基金管理委員會/國際資訊/美國超級基金介紹。 英文參考文獻 Acros Organics MSDS, 2006. Arndt, D., 1981. Manganese compounds as oxidizing agent in organic chemistry. Open Court Pub. Co., LaSalle, IL. ATSDR (Agency for Toxic Substances and Disease Registry), 1997. Tetrachloroethylene. ATSDR (Agency for Toxic Substances and Disease Registry), 2003. Trichloroethylene. Balabanove, S.A., Markevich, A.M., 1966. Kinetics of the reaction of ammonium peroxydisulfate with ferrous iron. Zn. Fiz. Khim. 40(4): 775-780. Banerjee, M., Konar, R.S., 1984. Comment on the paper “ Polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system”, Journal of Polymer Science: Polymer Chemistry Edition 22: 1193-1195. Bender, M. L., Komiyama, M., 1978. Cyclodextrin chemistry. Springer-Verlag Berlin Hidelberg New York. Bellamy, W.D., Hickman, G.T., Mueller, P.A., Ziemba, N., 1991. Treatment of VOC-contaminated groundwater by hydrogen peroxide and ozone oxidation, Research Journal WPFC 63(2): 120-128. Beltran, F.J., Gonzalez, M., Acedo, B., Paramillo, J., 1996. Contribution of free radical oxidation toeliminate volatile organochlorine compounds in water by ultraviolet radiation and hydrogen peroxide. Chemosphere 32(10): 1949-1961. Bizzigotti, G.O., Reynolds, D.A., Kueper, B.H., 1997. Enhanced solubilization and destruction of tetracholoethylene by hydroxypropyl-β-cyclodextrin and iron. Environ. Sci. Technol. 31: 472-478. Brown, R.A., Skladany, G., Robinson, D., Fiacco, J., McTigue, J.W., 2001. Comparing permanganate and persulfate treatment effectiveness for various organic contaminants. Proceedings of the First International Conference on oxidation and reduction technologies for in-situ treatment of soil and groundwater, Niagara Falls, Ontario, Canada, June 25-29. Brown, R.A., Robinson, D., Skladany, G., Loeper, J., 2003. Response to naturally occurring organic material: Permanganate versus persulfate. Proceedings of ConSoil,2003-8th international FZK/TNO conference on contaminated soil, 1692-1698, May 12-16, Gent, Belgium. Bruell, C.J., Barker, C.C., Ryan, D.K., Duggan, J.W., 1998. Surfactant enhanced flushing of Unsaturated Porous Media. J. of soil contamination 7(1): 47-71. Brusseau, M.L., Wang, X., Wang, W.Z., 1997. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ. Sci. Technol. 31: 1087-1092. Cao, J., Zhao, C., Huang, L., Ding, Y., Wang, L., Han, S., 2000. Solubilization of Subtituted Indole Compounds by β-cyclodextrin in water. Chemosphere 40: 1411-1416. Chatain, V., Hanna, K., Brauer, C.d., Bayard, R., Germain, P., 2004. Enhanced solubilization of arsenic and 2,3,4,6 tetracholophenol from soils by a cyclodextrin derivative . Chemosphere 57: 197-206. Chen, G., Hoag, G.E., Chedda, P., Woody, B.A., Dobbs, G.M., 2001. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials B87:171-186. Crini, G., Morcellet, M., 2002. Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 25: 789-813. Connors, K.A., 1997. The stability of cyclodextrin complexes in solution. Chem. Rev. 97:1325-1357. Coons,D.E., Balba, M.T., Lin, C., Scrocchi, S., Weston, A., 2000. Remediation of chlorinated compounds by chemical oxidation. Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds, Wickramanayake, G.B., Gavaskar, A.R., Chen, A.S.C., Eds., Battelle press 161-168. Davis, E.L., 1997. How heat can enbance in-situ soil and aquifer remediation: Important chemical properties and guidance on choosing the appropriate technique, EPA Ground Water Issue, EPA/54/S-97/502. Ducom, G., Cadassud, C., 1999. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination 124:115-123. Eberson, L., 1987. Electro transfer reactions in organic chemistry. Springer-Verlag, Berlin. EPA, 1990. Subsurface contamination reference guide. Office of emergency and remedial response, Washington, DC 20460, EPA/540/2-90/011. FMC, Corporation. 2001. Persulfate technical information, Philadelphia, PA USA. Fountain, J.C., 1998. Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation. Ground-Water Remediation Technologies Analysis Center. TE-98-02. Gao, S., Wang, L., Huang, Q., Han, S., 1998. Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β-cyclodextrin. Chemosphere 37(7): 1299-1305. Gates D.D., Siegrist, R.L., 1995. In situ chemical oxidation of Trichloroethylene using hydrogen peroxide. Journal of Environmental Engineering September: 639-644. Gates-Anderson, D.D., Siegrist, R.L., Cline, S.R., 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. Journal of Environmental Engineering April: 337-347. Greenberg, D., Hicks, P., Noel, J., Hockett, R., 2004. Oxidant demand analyses, Field pilot tests, and permanganate consumption kinetics, The fourth International Conference on Remediation of chlorinated and recalcitrant compounds, Monterey, California, 23-26 May. Greenberg, R.S., Andrew, T., Kalarla, P.K.C., Watts R.J., 1998. In-situ Fenton- ike oxidation of volatile organics: laboratory, pilot, and full-scale demonstrations, Remediation Spring: 29-42. Hanna, K., Brauer,, Germain, P., 2004. Cyclodextrin-enhanced solubilization of pentachlorophenol in water. Journal of Environmental Management 71: 1-8. Heckel, H., Henglein, A., Beck, G., 1966. Pulsradiolytische Undersuchung des Radikalanions . Ber. Bunsenges. Phys. Chem. 70: 149-154. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62: 185-203. Huang, C.K., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M., 2001. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials B87: 155-169. Huang, C.R., Shu, H.Y., 1995. The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2 processes. Journal of Hazardous Material 41(1): 47-64. Kirk, R.E., Othmer, D.F., Martin, G., David, E.E., 1979. Kirk-ohmer encyclopedia of chemical technology. Vol.6, John wiley & Sons, Inc. New York, NY. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., 1995. Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts. Russian Journal of general chemistry, 65(7) Part2. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., 1997. Kinetics of oxidation glucose by persulfate ions in presence of Mn(II) ions. Kinetics and Catalysis 38(3): 391-396. Kolthof, I.M., Medalia, A.I., Raaen, H.P., 1951. The reaction between Ferrous iron and Peroxides. IV. Reaction with potassium persulfate, J. of Am. Chem. Soc. 73: 1733-1739. LaChance, J.C., Hewitt, A., Reitsma, S., Lachance, J., Barker, R., 1998. In situ oxidation of TCE using potassium permanganate Part 2: Pilot study. Physical, Chemical, and Thermal technologies, Remediation of chlorinated and recalcitrant compounds, Battelle Press, Ohio USA. Latimer, W.M., 1952. Oxidation potentials. Prentice-Hall, Inc., Englewood Cliffs, NJ. Lenka, S., Dash, S.B., 1983. Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system. Journal of Macromolecular Science-Chemistry A20(3): 397-407. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55: 1213-1223. Liang, C., Bruell, C.L., Marley, M.C., Sperry, K.L., 2004b Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55: 1225-1233. Lindsey, M.E., Xu, G., Lu, J., Tarr, M.A., 2003 . Enhanced Fenton Degradation of Hydrophobic Organics by Simultaneous Iron and Pollutant Complexation with Cyclodextrins, The Science of the Total Environment 307: 215-229. Masten, S.J., Hoigne, J., 1992. Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbon in water, Ozone: Science and Engineering 14(3): 197-213. Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous solution, Journal of Physical Chemistry Reference Data 17(3): 1027-1084. Neyens, E., Baeyens, J., 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. of Hazardous Materials B98: 33-50. Palmer, C.J., Johnson, R.L., 1989. Physical processes controlling the transport of Non-aqueous phase liquids in the subsurface. Seminar publication: Transport and fate of contaminant in the subsurface, Chapter 3, EPA/625/4-89/019, 23-28. Pennington, D.E., Haim, A., 1968. Stoichiometry and mechanism of the chromium (II) peroxydisulfate reaction. J. Am. Chem. Soc. 90: 3700-3704. Pignatello, J.J., Baehr, K., 1994. Ferric complexes as catalysts for “Fenton” degradation of 2,4,-D and mtolachlor in soil, J. Environ. Qual. 23: 365-370. Pignatello, J.J., Day, M., 1996. Mineralization of methyl parathion insecticide in soil by hydrogen peroxide activated with iron(III)-NTA or -HEIDA complexes, Hazardous Waste & Hazardous Materials 13(2): 237-244. Pignatello, J.J., Liu, D., Huston, P., 1999. Evidence for an additional oxidation in the photoassisted Fenton reaction. Environmental Science & Technology 33 (11): 1832-1839. Riley, R.G., Zachara, J.M., Wobber, F.J., 1992. Chemical contaminants in DOE lands and selection of contaminant mixtures for subsurface science research, U.S. Department of Energy, Office of Energy Research, DOE/ER-047T. Semer, R., Reddy, K.R., 1996. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. of Hazardous Materials 45: 45-57. Shirin, S., Buncel, E., VanLoon, G.W., 2003. The use of β-cyclodextrins to enhance the aqueous solubility of trichloroethylene and perchloroethylene and their removal from soil organic matter: Effect of substituents. Can. J. Chen. 81: 45-52. Shirin, S., Buncel, E., VanLoon, G.W., 2004. Effect of cyclodextrins on iron- mediated dechlorination of trichloroethylene – A proposed new mechanism. Can. J. Chen. 82: 1674-1685. Shixiang, G., Liansheng, W., Qingguo, H., Sukui, H., 1998. Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β- cyclodextrin. Chemosphere 37(7): 1299-1305. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and practices of in situ chemical oxidation using permanganate. Battelle Press, Ohio, USA. Skarzewski, J., 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinines. Tetrahedron 40(23): 4997-5000. Tan, K.H., 1996. Soil sampling, Preparation, and analysis. Carcel Dekkrt, Inc., New York, NY. Tang, W.Z., Huang, C.P., 1996. Effectof chlorine content of chlorinated phenols on their oxidation kinitics. Chemosphere 33(8): 1621-1635. Traux, C.T., 1993. Investigation of the in-situ KMnO4 Oxidation of residual DNAPLs located below the groundwater table. Master Thesis, University of Waterloo, Canada USEPA (U.S Environmental Protection Agency). 1998. National primary drinking water regulations, technical fact sheet on trichloroethylene and tetrachloroethylene. USEPA (U.S Environmental Protection Agency). 2000. Current drinking water standards, National primary and secondary drinking water regulations. Walling, C., 1975. Fenton’s reagent revisited, Accounts of Chemical Research 8: 125-131. Wang, X., Brusseau, M.L., 1993. Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environ. Sci. Technol. 27: 2821-2825. Wang, X., Brusseau, M.L., 1995a. Cyclopentanol-enhanced solubilization of polycyclic aromatic hydrocarbons by cyclodextrin. Environ. Sci. Technol. 29: 2346-2351. Wang, X., Brusseau, M.L., 1995b. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ. Sci. Technol. 29: 2632-2635. Weeks, K.R., Bruell, C.J., Mohanty, N.R., 2000. Use of fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil and Sediment Contamination 9(4): 331-345. Yardin, G., Chiron, S., 2006 Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere 62: 1395-1402. Yeh, C.K., Novak, J.T., 1995. The effect of hydrogen peroxide on the degradation of methyl and ethyl tertpbutyl ether in soil. Water Environment Research 67:(5) 828-834.
摘要: 本研究利用環糊精(Cyclodextrins, CDs)能夠同時複合氯化有機溶劑(例如:三氯乙烯(Trichloroethylene, TCE)和四氯乙烯(Perchloroethylene, PCE))及過渡性金屬(例如:亞鐵離子)之特性,以提升鐵活化過硫酸鹽氧化TCE和PCE之效率。在氧化處理受氯化有機溶劑污染之地下水體中,氧化劑ㄧ般較能快速氧化溶解相之氯化有機溶劑。然而,氯化有機溶劑之低溶解度常為化學氧化法處理此類污染物質效率之限制因素,因此,本研究嘗試利用β-CD及環糊精之衍生物hydroxypropyl-β-CD(HP-β-CD)以增加氯化有機溶劑於水中之溶解度,以提高亞鐵離子活化過硫酸鹽以產生硫酸根自由基(SO4-.)氧化氯化有機溶劑之效率。 實驗結果顯示,β-CD之使用無法增加TCE及PCE於水中之溶解度。然而,使用HP-β-CD則可增加TCE和PCE之水中相對溶解度(St/So),且HP- β-CD與氯化有機溶劑之間呈現1:1之複合。此外,實驗結果亦證實亞鐵離子存在並不影響HP-β-CD增加氯化有機溶劑之水中溶解度。另由過硫酸鹽降解實驗中證實,HP-β-CD/Fe2+(或β-CD/Fe2+)可持續性地活化過硫酸鹽,且過硫酸鹽之降解反應遵循假一階反應模式,而相較於亞鐵離子單獨之存在,過硫酸鹽則於瞬間快速降解後反應便趨緩慢。由此可證明,環糊精具有控制亞鐵離子存在於水溶液中之能力。 而於過硫酸鹽氧化低濃度TCE及PCE(60 mg/L)實驗結果顯示,於單獨Fe2+或HP-β-CD/Fe2+存在下,過硫酸鹽及TCE或PCE皆於瞬間快速降解,而後TCE或PCE則呈現緩慢持續之降解,相較無污染物存在時之實驗結果得知,過硫酸鹽之降解明顯減緩,乃因污染物之存在而受影響。而於高濃度TCE(1,400 mg/L)和PCE(330 mg/L)之實驗結果顯示,利用HP-β-CD增加氯化有機溶劑水中之溶解度,並以連續提供低濃度亞鐵離子之方式,相較於以單次提供高濃度亞鐵離子之方式,過硫酸鹽能更有效地氧化氯化有機溶劑。因此,以環糊精結合過硫酸鹽以處理氯化有機溶劑,相當具有處理此類污染物之潛力。
Cyclodextrins (CDs) can be used to simultaneously complex chlorinated solvents such as trichloroethylene (TCE) and perchloroethylene (PCE) and transitional metals (e.g., ferrous ion, Fe2+). Therefore, the use of CD in conjunction with chemical oxidation with persulfate anion (S2O82-) poses several advantages. For example, CD will increase the contaminant water solubility via complexation and the simultaneous complexed Fe2+ can be used to activate persulfate to generate a strong oxidant known as sulfate free radicals (SO4-.) (Eo = 2.4 V). Chemical oxidation methods are usually most successful to dissolved phase chlorinated solvents. Therefore, it is likely to increase mass transfer from non-aqueous to aqueous phase for effective oxidation reaction to occur. Experimental results revealed that β-CD can increase TCE and PCE solubilization. However, increases in hydroxypropyl-β-CD (HP-β-CD) concentrations resulted in increases in relative solubilization (St/So) of TCE and PCE. The increases were linear and indicated formation of a 1:1 binding complex. Moreover, the existence of Fe2+ did not affect the contaminant solubilization. The comparison of the results with respect to the ferrous ion activated persulfate with and without HP-β-CD demonstrated that the HP-β-CD can regulate the presence of Fe2+ and resulted in gradual persulfate decomposition. In contrast, in the presence of Fe2+ alone persulfate was decomposed to a certain level and halted depending on the concentrations of ferrous ion added. Furthermore, in the presence of HP-β-CD /Fe2+ or only Fe2+ persulfate can rapidly destroyed TCE and PCE (60 mg/L). However, the contaminant degradations thereafter were in slow rates. On the other hand, when the TCE and PCE solubilities increased to 1,400 and 330 mg/L, respectively, with HP-β-CD the contaminants can be degraded with persulfate activated by continuously providing Fe2+ activator.
其他識別: U0005-2906200616453900
Appears in Collections:環境工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.