Please use this identifier to cite or link to this item:
標題: 麵包樹果實及葉子於活體抗發炎之功效評估
In vivo assessment of the anti-inflammatory effects of the fruit and the leaf of Artocarpus communis
作者: 陳翔齊
Chen, Hsiang-Chi
關鍵字: 麵包樹
Artocarpus communis
anti-inflammatory effects
出版社: 食品暨應用生物科技學系所
引用: 李時珍,1982。本草綱目。人民衛生出版社。下冊 1839-1840頁。 吳佳娟,2004。不同種類之類黃酮對於人類周邊血液淋巴球細胞激素表現之影響。靜宜大學食品營養學系碩士論文。 劉業經,1981。台灣木本植物誌。國立中興大學農學院出版委員會327-328頁。 劉瓊惠,2007。台灣產麵包樹及馬來波羅蜜之生物活性成分研究。高雄醫學大學藥學研究所碩士論文。 劉欣怡,2010。透過抗發炎、抗氧化及抗腫瘤促進作用評估硫辛酸在化學預防上可能扮演的角色。國立成功大學環境醫學研究所碩士論文。 Abel, E. L., Angel, J. M., Kiguchi, K., DiGiovanni, J. 2009. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4: 1350-1362 Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K., Sethi, G. 2006. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72: 1605-1621. Al Zaid Siddiquee, K. and Turkson, J. 2008. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 18: 254-267. Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., Song, X., Dvozkin, T., Krelin, Y., Voronov, E. 2006. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 25: 387-408. Apte, R. N., Krelin, Y., Song, X., Dotan, S., Recih, E., Elkabets, M., Carmi, Y., Dvorkin, T., White, R. M., Gayvoronsky, L., Segal, S., Voronov, E. 2006. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 42: 751-759 Aravindaram, K. and Yang, N. S. 2010. Anti-inflammatory plant natural products for cancer therapy. Planta. Med. 76: 1103-1117. Bachelor, M. A. and Bowden, G. T. 2004. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 14:131-138. Balkwill, F. and Mantovani, A. 2001. Inflammation and cancer: back to Virchow? Lancet 357: 539-545. Balkwill, F. 2006. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 25: 409-416 Ban, H. S., Suzuki, K., Lim, S. S., Jung, S. H. Lee, S., Ji, J., Lee, H. S., Lee, Y. S., Shin, K. H., Ohuchi, K. 2004. Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by 2''-hydroxychalcone derivatives in RAW 264.7 cells. Biochem. Pharmacol. 67: 1549-1557. Blumberg, P. M. 1988. Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res. 48: 1-8 Boller, S., Soldi, C., Marques, M. C., Santos, E. P., Cabrini, D. A., Pizzolatti, M. G., Zampronio, A. R., Otuki, M. F. 2010. Anti-inflammatory effect of crude extract and isolated compounds from Baccharis illinita DC in acute skin inflammation. J. Ethnopharmacol. 130: 262-266. Bradley, P. P., Priebat, D. A., Christensen, R. D., Rothstein, G. 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78: 206-209. Canter, P. H., Thomas, H., Ernst, E. 2005. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol. 23: 180-185. Chan, S. C., Ko, H. H., Lin, C. N. 2003. New prenylflavonoids from Artocarpus communis. J. Nat. Prod. 66: 427-430. Choi, S. P., Kim, S. P., Kang, M. Y., Nam, S. H., Friedman, M. 2010. Protective effects of black rice bran against chemically-induced inflammation of mouse skin. J. Agric. Food Chem. 58: 10007-10015. Contreras-Jurado, C., Garcia-Serrano, L., Gomez-Ferreria, M., Costa, C. Paramio, J. M., Aranda, A. 2011. The thyroid hormone receptors as modulators of skin proliferation and inflammation. J. Biol. Chem. 286: 24079-24088. Coussens, L. M., Werb, Z. 2002. Inflammation and cancer. Nature 420: 860-867. Costin, G. E., Hearing, V. J. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB. J. 21: 976-994. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. 2003. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645-657. Currier, N., Solomon, S. E., Demicco, E. G., Chang, D. L. Farago M, Ying H, Dominguez, I., Sonenshein, G. E., Cardiff, R. D., Xiao, Z. X., Sherr, D. H., Seldin, D. C. 2005.Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol. Pathol. 2005, 33: 726-737. Eltzschig, H. K. and Carmeliet, P. 2011. Hypoxia and inflammation. N. Engl. J. Med. 364: 656-665. Fahmy, R. G., Waldman, A., Zhang, G., Mitchell, A. Tedla, N., Cai, H., Geczy, C. R., Chesterman, C. N., Perry, M., Khachigian, L. M. 2006. Suppression of vascular permeability and inflammation by targeting of the transcription factor c-Jun. Nat. Biotechnol. 24: 856-863. Fang, S. C., Hsu, C. L., Yen, G. C. 2008. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agric. Food Chem. 56: 4463-4468 Fang, S. C., Hsu, C. L., Yu, Y. S., Yen, G. C. 2008. Cytotoxic effects of new geranyl chalcone derivatives isolated from the leaves of Artocarpus communis in SW 872 human liposarcoma cells. J. Agric. Food Chem. 56: 8859-8868. Fujii, Y., Sengoku, T., Takakura, S. 2010. Repeated topical application of glucocorticoids augments irritant chemical-triggered scratching in mice. Arch. Dermatol. Res. 302: 645-652. Fukai, T., Satoh, K., Nomura, T., Sakagami, H. 2003. Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia. 74: 720-724. Gosslau, A., En, Jao. D. L., Huang, M. T., Ho, C. T. Evans, D., Rawson, N. E., Chen, K. Y. 2011. Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol. Nutr. Food Res. 55: 198-208. Guadagni, F., Ferroni, P., Palmirotta, R., Portarena, I., Formica, V., Roselli, M. 2007. TNF/VEGF cross-talk in chronic inflammation-related cancer initiation and progression: an early target in anticancer therapeutic strategy. In Vivo 21: 147-161. Haake, A. and Holbrook, K. 1999. The structure and development of skin. In Fitzpatrick’s Dermatology in General Medicine (Freedberg, I. M., Eisen, A. Z., Wolff, K., Austen, K. F., Goldsmith, L. A., Katz, S. I., and Fitzpatrick, T. B., eds) pp.70-144, McGraw-Hill, New York. Han, A. R., Kang, Y. J., Windono, T., Lee, S. K., Seo, E. K. 2006. Prenylated flavonoids from the heartwood of Artocarpus communis with inhibitory activity on lipopolysaccharide-induced nitric oxide production. J. Nat. Prod. 69: 719-721. Hanahan, D., Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364. Haura, E. B., Turkson, J., Jove, R. 2005. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol. 2: 315-324. Herencia, F., Ferrandiz, M. L., Ubeda, A., Guillen, I. Dominguez, J. N., Charris, J. E., Lobo, G. M., Alcaraz, M. J. 1999. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages. FEBS. Lett. 453: 129-134. Hernandez, G. L., Volpert, O. V., Iniguez, M. A., Lorenzo, E., Martinez-Martinez, S., Grau, R., Fresno, M., Redondo, J. M. 2001. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med. 193:607-620. Ho, Y. S., Lai, C. S., Liu, H. I., Ho, S. Y., Tai, C., Pan, M. H., Wang, Y. J. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochem. Pharmacol. 73: 1786-1795. Fang, S. C., Hsu, C. L., Yu, Y. S., Yen, G. C. 2008. Cytotoxic effects of new geranyl chalcone derivatives isolated from the leaves of Artocarpus communis in SW 872 human liposarcoma cells. J. Agric. Food Chem. 56: 8859-8868 Hsu, C. L., Shyu, M. H., Lin, J. A., Yen, G. C., Fang, S. C. 2011. Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem. 127: 127-134. Hummerich, L., Muller, R., Hess, J., Kokocinski, F. Hahn, M., Furstenberger, G., Mauch, C., Lichter, P., Angel, P. 2006. Identification of novel tumour-associated genes differentially expressed in the process of squamous cell cancer development. Oncogene 25: 111-121. Iniguez, M. A., Rodriguez, A., Volpert, O. V., Fresno, M., Redondo, J. M. 2003. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol. Med. 9:73-78. Jagtap, U. B. and Bapat, V. A. 2010. Artocarpus: a review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 129: 142-166. Jayasinghe, L., Balasooriya, B. A. I. S., Padmini, W. C., Hara, N., Fujimoto, Y. 2004. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarpus nobilis. Phytochemistry 65: 1287-1290. Kan, W. S. 1987. Parmaceutical Botany. National Research Institute of Chinese Medicine Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441: 431-436. Kasahara, S. and Hemmi, S. 1986. In Medicinal Herb Index in Indonesia; P. T. Eisai: Bogor, Indonesia, p 184. Kast, R., Furstenberger, G., Marks, F. 1993. Phorbol ester TPA- and bradykinin-induced arachidonic acid release from keratinocytes is catalyzed by a cytosolic phospholipase A2 (cPLA2). J. Inves.t Dermatol. 101: 567-572. Katiyar, S. K., Agarwal, R., Wood, G. S., Mukhtar, H. 1992. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-caused tumor promotion in 7,12-dimethylbenz[a]anthracene-initiated SENCAR mouse skin by a polyphenolic fraction isolated from green tea. Cancer Res. 52: 6890-6897. Koshihara, Y., Fujimoto, Y., Inoue, H. 1988. A new 5-lipoxygenase selective inhibitor derived from Artocarpus communis strongly inhibits arachidonic acidinduced ear edema. Biochem. Pharmacol. 37, 2161–2165. Kundu, J. K., Shin, Y. K., Kim, S. H., Surh, Y. J. 2006. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 27: 1465-1474. Lai, C. S., Li, S., Chai, C. Y., Lo, C. Y., Dushenkov, S., Ho, C. T., Pan, M. H., Wang, Y. J. 2008. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3'',4''-didemethylnobiletin, derived from nobiletin. Carcinogenesis 29: 2415-2424. Lee, J. L., Mukhtar, H., Bickers, D. R., Kopelovich, L. , Athar, M. 2003. Cyclooxygenases in the skin: pharmacological and toxicological implications. Toxicol. Appl. Pharmacol. 192, 294–306. Lee, do. Y., Choo, B. K., Yoon, T., Cheon, M. S., Lee, H. W., Lee, A. Y., Kim, H. K. 2009. Anti-inflammatory effects of Asparagus cochinchinensis extract in acute and chronic cutaneous inflammation. J .Ethnopharmacol. 121: 28-34. Lin, K. W., Liu, C. H., Tu, H. Y., Ko, H. H., Wei, B. L. 2009. Antioxidant prenylflavonoids from Artocarpus communis and Artocarpus elasticus. Food Chem. 15: 558-562 Lin, W. W. and Karin, M. 2007. A cytokine-mediated link between innate immunity, inflammation, and cancer. J .Clin. Invest. 117: 1175-1183. Makita, H., Tanaka, T., Fujitsuka, H., Tatematsu, N., Satoh, K., Hara, A., Mori, H. 1996. Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. Cancer Res. 56: 4904-4909. Mantovani, A., Allavena, P., Sica, A., Balkwill, F. 2008. Cancer-related inflammation. Nature 454: 436-444. Mengoni ES, Vichera G, Rigano LA, Rodriguez-Puebla ML, Galliano SR, Cafferata EE, Pivetta OH, Moreno S, Vojnov AA. 2011. Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia. 82: 414-421 Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., Balkwill, F. 1999. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat. Med. 5: 828-831. Murakami, A., Nakamura, Y., Torikai, K., Tanaka, T., Koshiba, T., Koshimizu, K., Kuwahara, S., Takahashi, Y., Ogawa, K., Yano, M., Tokuda, H., Nishino, H., Mimaki, Y., Sashida, Y., Kitanaka, S., Ohigashi, H. 2000. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 60: 5059-5066. Murakawa, M., Yamaoka, K., Tanaka, Y., Fukuda, Y. 2006. Involvement of tumor necrosis factor (TNF)-alpha in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem. Pharmacol. 71: 1331-1336. Murono, S., Inoue, H., Tanabe, T., Joab, I., Yoshizaki, T., Furukawa, M., Pagano, J . S. 2001. Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved invascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc. Natl. Acad. Sci. 98: 6905-6910. Nakamura, T., Tokushima, T., Kawabata, K., Yamamoto, N., Miyamoto, M., Ashida, H. 2012. Absorption and metabolism of 4-hydroxyderricin and xanthoangelol after oral administration of Angelica keiskei (Ashitaba) extract in mice. Arch. Biochem. Biophys. 521: 71-76. Naugler, W. E. and Karin, M. 2008. The wolf in sheep''s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14: 109-119 Nestle, F. O., Di Meglio, P., Qin, J. Z., Nickoloff, B. J. 2009. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9: 679-691 Nickoloff, B. J., Ben-Neriah, Y., Pikarsky, E., 2005. Inflammation and cancer: is the link as simple as we think? J. Invest. Dermatol. 124: x-xiv. Oeckinghaus, A., Hayden, M. S, Ghosh, S. 2011. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12: 695-708 Pan, M. H. and Ho, C. T. 2008. Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 37: 2558-2574. Paul, S. A., Simons, J. W., Mabjeesh, N. J. 2004. HIF at the crossroads between ischemia and carcinogenesis. J. Cell Physiol. 200: 20-30. Pinto, N. B., Morais, T. C., Carvalho, K. M., Silva, C. R., Andrade, G. M., Brito, G. A., Veras, M. L., Pessoa, O. D., Rao, V. S., Santos, F. A. 2010. Topical anti-inflammatory potential of Physalin E from Physalis angulata on experimental dermatitis in mice. Phytomedicine 17, 740-743. Prado, R., Francis, S. O., Mason, M. N., Wing, G., Gamble, R. G., Dellavalle, R. 2011. Nonmelanoma skin cancer chemoprevention. Dermatol. Surg. 37: 1566-1578. Pradono, P., Tazawa, R., Maemondo, M., Tanaka, M., Usui, K., Saijo, Y., Hagiwara, K., Nukiwa, T. 2002. Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res. 62:63-66. Ragone, D. 1997. Breadfruit. Artocarpus altilis (Parkinson) Fosberg. Promoting the conservation and use of underutilized and neglected crops. 10. Intl. Plant Genetic Resources Inst., Rome. Rahman, S., Bhatia, K., Khan, A. Q., Kaur, M., Ahmad, F., Rashid, H., Athar, M., Islam, F., Raisuddin, S. 2008. Topically applied vitamin E prevents massive cutaneous inflammatory and oxidative stress responses induced by double application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice. Chem. Biol. Interact. 172: 195-205. Rho, O., Kim, D. J., Kiguchi, K., Digiovanni, J. 2011. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol. Carcinog. 50: 264-279 Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., Karin, M. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807-811. Rorke, E. A., Adhikary, G., Jans, R., Crish, J. F., Eckert, R. L. 2010. AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation. Oncogene 29: 5873-5882. Rundhaug, J. E. and Fischer, S. M. 2010 Molecular Mechanisms of Mouse Skin Tumor Promotion. Cancers 2: 436-482 Semenza, G. L. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3: 721-732. Shimizu, K., Kondo, R., Sakai, K., Buabarn, S., Dilokkunanant, U. 2000. A geranylated chalcone with 5α-reductase inhibitory properties from Artocarpus incisus. Phytochemistry 54: 737-739. Shrotriya, S., Kundu, J. K., Na, H. K., Surh, Y. J. 2010. Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res. 70: 1932-1940. Slaga, T. J. 1983. Overview of tumor promotion in animals. Environ. Health Perspect. 50: 3-14. Smith, W. L., DeWitt, D. L., Garavito, R. M. 2000. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145-182. Stern, R. S. 2010. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch. Dermatol. 146: 279-282. Subbaramaiah, K. and Dannenberg, A. J. 2003.  Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 24: 96-102. Trecul, A., Morceau, F., Dicato, M., Diederich, M. 2012. Dietary compounds as potent inhibitors of the signal transducers and activators of transcription (STAT) 3 regulatory network. Genes Nutr. 7: 111-125. Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., Telser, J. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 266: 37-56. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84 Van Waes, C., Yu, M., Nottingham, L., Karin, M. 2007. Inhibitor-kappaB kinase in tumor promotion and suppression during progression of squamous cell carcinoma. Clin. Cancer Res. 13: 4956-4959. Wang, H. Q., Kim, M. P., Tiano, H. F., Langenbach, R., Smart, R. C. 2001. Protein kinase C-alpha coordinately regulates cytosolic phospholipase A(2) activity and the expression of cyclooxygenase-2 through different mechanisms in mouse keratinocytes. Mol. Pharmacol. 59: 860-866. Wilmer, J. L., Burleson, F. G., Kayama, F., Kanno, J., Luster, M. I. 1994. Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin. J. Invest. Dermatol. 102: 915-922. Wei, B. L., Weng, J. R., Chiu, P. H., Hung, C. F., Wang, J. P., Lin, C. N. 2005. Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. J. Agric. Food Chem. 53: 3867- 3871. Weng, J. R., Chan, S. C., Lu, Y. H., Lin, H. C., Ko, H. H., Lin, C. N. 2006. Antiplatelet prenylflavonoids from Artocarpus communis. Phytochemistry 67: 824-829. Wu, H., Hsieh, M. C., Lo, C, Y., Liu, C. B., Sang, S., Ho, C. T., Pan, M. H. 2010. 6-Shogaol is more effective than 6-gingerol and curcumin in inhibiting 12-O-tetradecanoylphorbol 13-acetate-induced tumor promotion in mice. Mol. Nutr. Food Res. 54: 1296-1306. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, Cheng JQ, Jove R, Yu H. 2005. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24: 5552-5560. Yadav, V. R., Prasad, S., Sung, B., Aggarwal, B. B. 2011.The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Int. Immunopharmacol. 11: 295-309. Yamaura, K., Doi, R., Suwa, E., Ueno, K. 2011. A novel animal model of pruritus induced by successive application of glucocorticoid to mouse skin. J. Toxicol. Sci. 36: 395-401. Young, M. R., Yang, H. S., Colburn, N. H. 2003. Promising molecular targets for cancer prevention: AP-1, NF-kappa B and Pdcd4. Trends Mol. Med. 9: 36-41.
摘要:   麵包樹 (Artocarpus communis Moraceae)為桑科麵包樹屬植物,又稱麵包果樹 (breadfruit tree),多分佈於台灣南、東部以及東南亞地區,具有抗氧化、抗血小板凝集、抗發炎及抗癌等功效,由於麵包樹植物萃取物於臨床活體中之功效性未明,因此本研究利用已建立之動物試驗探討麵包樹植物萃取物之生物活性評估。內容主要分成兩部分:(一)麵包樹植物萃取物於活體抗發炎之功效評估與 (二)麵包樹植物之果實主要類黃酮成分3’-geranyl-2’,3,4,4’-tetrahydroxychalcone及葉部之xanthoangelol於活體抗發炎之功效評估。   首先,探討麵包樹植物:果實及葉部甲醇萃取物 (methanol extracts of the fruit and the leaf of Artocarpus communis, MEFA and MELA)於活體抗發炎功效。由總多酚及總類黃酮之分析結果證實,MEFA及MELA中富含具抗發炎活性之多酚類化合物。12-O-tetradecanoylphorbol-13-acetate (TPA)誘導皮膚,於發炎試驗指出, MEFA及MEFA皆可減少耳部組織中TPA誘發之發炎指標蛋白PGE2、促發炎細胞激素TNF-α、IL-1β、發炎基因 (IL-1β、IL-6、TNF-α)表現及改善皮膚水腫、耳部皮膚增厚與皮下嗜中性白血球浸潤等發炎現象。綜合以上,麵包樹植物萃取物於TPA誘導發炎之動物模式中具有良好之抗發炎作用,其中MEFA之抑制效果較MELA顯著。進一步評估MEFA及MELA於化學誘導皮膚癌模式中抑制腫瘤生成之功效,結果發現以MEFA及MELA皆可抑制TPA誘發之腫瘤生成、腫瘤惡化及腫瘤周邊血管新生,推測MEFA及MELA可減緩TPA持續誘發之發炎反應,進而使腫瘤生成減少。   HPLC分析結果顯示,MEFA中主要類黃酮成分為3’-geranyl-2’,3,4,4’-tetrahydroxychalcone (AC-F)而MELA則為xanthoangelol (AC-L),推測其個別為MEFA及MELA中主要之抗發炎活性成分。基於上述假設,進一步各別評估AC-F及AC-L於活體之抗發炎功效。於TPA誘導皮膚發炎實驗結果發現,AC-F及AC-L可減少耳部組織中TPA誘發之發炎因子 (PGE2、TNF-α、IL-1β)表現,以及背部皮膚水腫、耳部皮膚發炎紅腫與皮下嗜中性白血球浸潤等發炎現象。另外,利用化學誘導皮膚癌模式評估AC-F及AC-L於抑制腫瘤生成之功效發現,塗抹AC-F及AC-L於小鼠皮膚上皆可減少7,12-dimethylbenz[α]anthracene (DMBA)/TPA兩階段誘發之腫瘤生成,推測其可能藉由調控MAPK途徑並抑制NF-κB活化、抑制DMBA/TPA誘發之iNOS及COX-2表現,達到減緩皮膚癌化之效果。綜合以上,3’-geranyl-2’,3,4,4’-tetrahydroxychalcone及xanthoangelol為麵包樹植物萃取物中兩種含量最高之黃酮類抗發炎成分。
Artocarpus communis has been identified as a rich source of flavonoids, which have been highly gaining attention for their potential chemopreventive abilities. In this study, methanol extract of the fruit of A. communis (MEFA) and methanol extract of the leaf of A. communis (MELA) were prepared and their effects on inflammation-associated skin tumorigenesis were assessed using mouse models including 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cutaneous inflammation as well as 7,12-dimethylbenz[α]anthracene (DMBA)-initiated and TPA-promoted skin tumorigenesis. There are two topics included in this study: (1) Effects of methanol extracts of fruit and leaf of Artocarpus communis on inflammation-associated skin tumorigenesis in ICR mice; (2) Effects of 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone and xanthoangelol of Artocarpus communis on inflammation-associated skin tumorigenesis in ICR mice. According to the results, both of MEFA and MELA produced a significant decrease in intensity of neutrophil infiltration in mouse skin caused by TPA, which appeared to be mediated by inhibition of NF-κB/AP-1-regulated pro-inflammatory genes (iNOS, COX-2, TNF-α, IL-1β and IL-6) and production of pro-inflammatory factors (TNF-α, IL-1β and PGE2). In addition, topical application with MEFA or MELA significantly reduced cutaneous edema in dorsal skin and ear of TPA-induced mice. Topical application with MEFA or MELA effectively attenuated tumor incidence, hyperplasia (evaluated by multiplicity and volume of tumors), malignancy and angiogenesis of TPA-caused skin tumor promotion in DMBA-initiated mice. These findings first demonstrate that flavonoid-rich MEFA and MELA may inhibit the promotion of skin tumorigenesis in vivo by directly potent anti-inflammatory actions. Moreover, an HPLC analysis revealed that MEFA contained flavonoids compounds such as 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone and xanthoangelol. Furthermore, we investigate the anti-inflammatory abilities of 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone and xanthoangelol on TPA-induced cutaneous inflammation as well as DMBA-initiated and TPA-promoted skin tumorigenesis in ICR mice. As the results showed, topical application with 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone and xanthoangelol significantly decreased the production of pro-inflammatory mediators (TNF-α, IL-1β and PGE2) and reduced cutaneous edema in dorsal skin and ear of TPA-induced mice. In addition, topical application with 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone or xanthoangelol effectively attenuated tumor incidence, hyperplasia of TPA-caused skin tumor promotion in DMBA-initiated mice. In conclusion, these results indicate that MEFA and MELA are rich in flavonoids, which possess great anti-inflammatory potential. Also, it suggests that 3’-geranyl-2’,3,4,4’-tetrahydroxychalcone and xanthoangelol are the bioactive compounds of MEFA and MELA from Artocarpus communis.
其他識別: U0005-1508201210205600
Appears in Collections:食品暨應用生物科技學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.