請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5249
標題: 水稻田生長季及休耕期通量資料分析與比較
Comparison and analysis of surface fluxes over rice paddies during growing and fallowing seasons
作者: 吳兆偉
Wu, Chao-Wei
關鍵字: surface energy closure
地表能量缺口
eddy covariance system
Bowen Ratio
photosynthesis
thermal emissivity
渦流協變性系統
鮑溫比
光合作用
熱放射率
出版社: 環境工程學系所
引用: Arya, S.P., “Introduction to Micrometeorology,” Academic Press, 420pp (2001). Aubinet, M., A. Grelle, A. Ibrom, Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, P. Berbigier, Ch. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grünwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, and T. Vesala, “Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology,” Advances in Ecological Research, vol. 30, pp. 114-175 (2000). Beverland, I.J., D.H. Oneill, S.L. Scott, and J.B. Moncrieff, ”Design, construction and operation of flux measurement system using the conditional sampling technique,“ Atmospheric Environment, vol. 30, pp. 3209-3220 (1996). Blanken, P.D., T.A. Black, H.H. Neumann, G.D. Hartog, P.C. Yang, Z. Nesic, R. Staebler, W. Chen, and M.D. Novak, “Turbulent flux measurements above and below the overstory of a boreal aspen forest,” Boundary-Layer Meteorology, vol. 89, pp. 109-140 (1998). Bowen, I.S., “The ratio of heat losses by conduction and by evaporation from any water surface:Physical Review,” vol. 27, pp. 779-787 (1926). Bowling, D.R., A.A. Turnipseed, A.C. Delany, D.D., Baldocchi, J.P. Greenberg, and R.K. Monson, ”The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases,” Oecologia, vol. 116, pp. 306-315 (1998). Brotzge, J.A., and K.C. Crawford, “Examination of the Surface Energy Budget:A Comparison of Eddy Correlation and Bowen Ratio Measurement Systems,” Journal of Hydrometeorology, vol. 4, pp. 160-178 (2003). Brutsaert, W.H., “Evaporation into the Atmosphere,” Kluwer Academic Publishers, 229pp (1991). Businger, J.A. and S.P. Oncley, ”Flux measurement with conditional sampling,” Journal of Atmospheric and Oceanic Technology, vol. 7, pp. 349-352 (1990). Garratt, J.R., “The atmospheric boundary layer,” Cambridge university press, pp. 15-39 (1992). Gash, J.H.C., “A note on estimating the effect of limited fetch on micrometeorological evaporation measurements,” Boundary-Layer Meteorology, vol. 35, pp. 409-413 (1986). Grelle, A., and A. Lindroth, “Eddy-correlation system for long-term monitoring of fluxes of heat, water vapor and CO2,” Global Change Biol., vol. 2, pp. 297-307 (1996). Horst, T.W., and J.C. Weil, “Footprint estimation for scalar flux measurements in the atmospheric surface layer,” Boundary-Layer Meteorology, vol. 59, pp. 279-296 (1992). Horst, T.W., “The footprint for estimation of atmospheric-surface exchange fluxes by profile techniques,” Boundary-Layer Meteorology, vol. 90, pp. 171-188 (1999). Kaimal, J.C., and J.A. Businger, “A Continuous Wave Sonic Anemometer-Thermometer,” J. Applied Meteorol., vol. 2, pp. 156-164 (1963). Kaimal, J.C., and J.E. Gaynor, “Another Look at Sonic Thermometry,” Boundary-Layer Meteorol., vol. 56, pp. 401-410 (1991). Kaimal, J.C., and J.J. Finnigan, “Atmospheric boundary layer flows:Their structure and measurement,” Oxford university press, 289pp (1994). Lee, X., “On micrometeorological observations of surface-air exchange over tall vegetation,” Agricultural and Forest Meteorology, vol. 91, pp. 39-49 (1998). Lee, X., Q. Yu, X. Sun, J. Liu, Q. Min, Y. Liu, and X. Zhang, “Micrometeorological fluxes under the influence of regional and local advection:a revisit,” Agricultural and Forest Meteorology, vol. 122, pp. 111-124 (2004). Liu, Y., C.P. Weaver, and R. Avissar, “Toward a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity,” Journal of Geophysical Research, vol. 104, pp. 19515-19533 (1999). McMillen, R.T., “An eddy correlation technique with extended applicability to non-simple terrain,” Boundary-Layer Meteorology, vol. 43, pp. 231-245 (1988). Meek, D.W., and J.H. Prueger, “Solutions for three regression problems commonly found in meteorological data analysis,” American Meteorological Society, pp. 141-145 (1998). Miyata, A., R. Leuning, T. D. Denmead, J. Kim, and Y. Harazono. 2000. Carbon dioxide and methane fluxes from an intermittently flooded Paddy field. Agric. For. Meteorol. 102:287-303. Monin, A.S., and A.M. Obukhov, “Basic laws of turbulent mixing in the atmosphere near thr ground,” Akad. Nauk. SSR., Geophiz Inst., vol. 24, pp. 163-187 (1954). Msssman, W.J., and X. Lee, “Eddy covariance flux correction and uncertainties in long-term stydies of carbon and energy exchanges,” Agricultural and Forest Meteorology, vol. 113, pp. 121-144 (2002). Paltridge, G.W., and C.M.R. Platt, “Radiative processes in meteorology and climatology,” Elsevier Sci., New York (1976). Reynolds, O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philosophical Transactions of the Royal Society of London. A, vol. 186, pp. 123-164 (1895). Richards, J.M., “A simple expression for the saturation vapour pressure of water in the range -50 to 140 °C,” J. Phys. D: Appl. Phys., vol. 4, pp. L15-18 (1971). Rinne, J., “Application and development of surface layer flux techniques for measurements of volatile organic compound emissions from vegetation,” Finnish Meteorological Institute, Helsinki (2001). Sanchez, M. L., M. I. Ozores, M. J. Lo''pez, R. Colle, B. DeTorre, M. A. Garcia and I. P''erez. 2003. Soil CO2 fluxes beneath barley on the central Spanish plateau. Agric. For. Meteorol. 118:85-95 Schmid, H. P., C. Susan, B. Grimmond, F. Cropley, B. Offerle and H. B. Su. 2000. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. For.Meteorol. 103:357-374. Schimel, D., I. Enting, M. Heimann, T. Wigley, D. Raynaud, D. Alves, and U. Siegenthaler. 1995. CO2 and carbon cycle. p. 35-71. in: Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. (Houghton, J. T., L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, and K. Maskell, eds.) Cambridge University Press, Cambridge, United Kingdom and New York, N.Y, USA. Schotanus, P., F.T.M. Nieuwstadt, and H.A.R. de Bruin, “Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes,” Boundary-Layer Meteorol., vol. 26, pp. 81-93 (1983). Sivaramakrishnan S., S. Sangeetha, and K.G. Vernekar, “Characteristics of turbulent fluxes of sensible heat and momentum in the surface boundary layer during the Indian summer monsoon,” Boundary Layer Meteorology, vol. 60, pp. 95-108 (1992). Stull, R.B., “An Introduction to Boundary Layer Meteorology,” Kluwer Academic Publishers, 666pp (1988). Sutton, O.G., “Micrometeorology,” McGraw-Hill, New York, 333pp (1953). Swinbank, W.C., “The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere,” Journal of the Atmospheric Sciences, vol. 8, pp. 135-145 (1951). Tsuang, B.J., “Analytical asymptotic solution to determine interactions between the planetary layer and the Earth’s surface,” Journal of Geophysical Research, vol. 108, no. D16, 8608 (2003). Twine, T.E., W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, and M.L. Wesely, “Correcting eddy-covariance flux underestimates over a grassland,” Agricultural and Forest Meteorology, vol. 103, pp. 279-300 (2000). Villalobos, F.J., ”Correction of covariance water vapor flux using additional measurements of temperature,” Agricultural and Forest Meteorology, vol. 88, pp. 77-83 (1997). Wallace, J.M., and P.V. Hobbs, “Atmospheric Science an Introductory Survey,” Academic Press, Inc., New York (1977). Webb, E.K., G.I. Pearman, and R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Quart. J. R. Met. Soc., vol. 106, pp. 67-90 (1980). Wilczak, J.M., S.P. Oncley, and S.A. Stage, “Sonic anemometer tilt correction algorithms,” Boundary-Layer Meteorology, vol. 99, pp. 127-150 (2001) Wilson, K.B., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma, “Energy balance closure at FLUXNET sites,” Agricultural and Forest Meteorology, vol. 113, pp. 223-243 (2002). Zhang, S., C. Qiu, and W. Zhang, “Estimating heat fluxes by merging profile formulae and the energy budget with a variational technique,” Advances in Atmospheric Science, vol. 21, pp. 627-636 (2004). Tsai, J.I., Tsuang, B.J., Lu, P.S., Yao, M.H., Shen, y., “Surface energy components and land characteristics of a rice paddy,” Journal of Applied Meteorology and Climatology(2007). Shen, Y., Chen,C.L., “Relations of photosynthetically active radiation to measured solar irradiance in summer in central Taiwan, ” Proceedings of the National Science Cuncil,ROC(1992). Tsuang, B.J., “Ground jeat flux determination according to land skin temperature observations from in situ stations and satellites, ”American Meteorological Society(2005). 蔡徵霖,「以垂直剖面氣象場及輻射資料計算地表粗糙度之研究」,碩士論文,國立中興大學環境工程研究所,台中 (2001)。 盧伯勝,「渦流協變性系統量測紊流熱通量之研究」,碩士論文,國立中興大學環境工程研究所,台中 (2005)。 余思穎,「利用渦流協變性系統量測都會區紊流熱通量之研究」,碩士論文,國立中興大學環境工程研究所,台中 (2006)。 姚銘輝、陳守泓.水稻田二氧化碳吸存量之研究,J. Taiwan Agric. Res.54:150~161(2005)
摘要: 渦流協變性系統為一現今公認觀測大氣地表層內二氧化碳、水氣等溫室效應氣體之循環及紊流熱通量能量變化之良好設備,而本研究內容為利用渦流協變性系統觀測水稻田生長期與休耕期之通量變化豐富通量觀測資料庫之內容並進行資料分析與比較。 本次研究場址位於霧峰農業試驗所,並於2006年4-5月、2006年9-10月之水稻生長期及2006年12月、2007年1月之水稻休耕期架設渦流協變性系統、輻射計等氣象儀器進行觀測,水稻生長期之場址為種植水稻作物且土壤為濕潤含水狀態而休耕期為未種植任何作物且為旱地狀態,實驗觀測、記錄此兩種不同時期之二氧化碳、水氣、紊流熱通量等氣象資料。 觀測結果顯示,水稻田生長期之蒸發潛熱通量介於0~120Wm-2,可感熱通量介於-10~70 Wm-2;水稻田生長期白天(7:00 am~5:00 pm)之能量平衡比例(EBR)為0.88;二氧化碳通量通量白天為代表吸收之負值晚上為代表排放之正值。休耕期之蒸發潛熱通量小時平均值介於為0~120Wm-2,可感熱通量小時平均值在-10~100 Wm-2,白天之能量平衡比例(EBR)為0.7;白天反照率平均為0.127;白天期間Bowen Ratio的平均值是0.82;休耕期aerodynamic resistance以及canopy resistance兩種阻抗之白天平均值分別為50及406 sm-1,canopy resistance不論在任何時段皆大於aerodynamic resistance;反照率及土壤含水率呈現負相關;光量子計與太陽輻射呈現正相關。
Abstract Eddy Covariance (EC) system was recommended a fine instrument to measure flux of greenhouse gases and turbulence heat flux.And this study is to measure and analysis to surface fluxes over rice paddies during flooded and fallowing seasons(2006/4-2006/5、2006/9-2006/10、2006/12、2007/1) in Wu-Feng Agricultural Research Institute, Taichung, Taiwan (24°01´ N ,120°41´ E).The soil during flooded seasons is coverd by water and the soil during fallowing seasons is not. It is found the value of latent heat fluxes are between 0 and 120 Wm-2, and the value of sensible heat fluxes are between -10 and 70 Wm-2 during flooded seasons.The energy balance ratio is 0.88 during flooded seasons daytime(7:00 am~5:00 pm). The value of latent heat fluxes are between 0 and 120 Wm-2, and the value of sensible heat fluxes are between -10 and 100 Wm-2 during fallowing seasons.The energy balance ratio is 0.7during fallowing seasons daytime(7:00 am~5:00 pm) The mean value of albedo during the fallowing seasons daytime period was 0.127 and the mean value of Bowen Ratio during the fallowing seasons daytime period was 0.82. The mean value of aerodynamic resistance(ra) during the daytime period was 50 sm-1,and canopy resistance(rc) was 406 s m-1. The aerodynamic resistance are always higher than canopy resistance.
URI: http://hdl.handle.net/11455/5249
其他識別: U0005-0308200712012300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0308200712012300
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。