Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5271
標題: 中孔洞擔體觸媒於空氣污染防制上之應用
Mesoporous materials as catalyst support for air pollution control
作者: 盧啟元
Lu, Chi-Yuan
關鍵字: mesoporous activated carbon
中孔洞活性碳
carbon nanotube
polyol method
support
catalyst
奈米碳管
多元醇法
擔體
觸媒
出版社: 環境工程學系所
引用: Acres G.J.K. (2001), Recent advances in fuel cell technology and its applications. Journal of Power Sources, 100, pp. 60-66. Ahmadpour A., Do D. (1997), The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation, Carbon, 35, pp. 1723-1732. Almansa C., Molina-Sabio M., Rodrı´guez-Reinoso F. (2004). Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous and Mesoporous Materials, 76, pp. 185-191. Andrews R., Jacques D., Rao A. M., Derbyshire F., Qian D., Fan X., Dickey E. C., Chen J. (1999), Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chemical Physics Letters, 303, pp. 467-474. Ariyadejwanich P., Tanthapanichakoon W., Nakagawa K. (2003), Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 41 (1), pp. 157-164. Auer E., Freund A., Pietsch J., Tacke T. (1998), Carbons as Supports for Industrial Precious Metal Catalysts, Applied Catalysis A, 173(2), pp. 259-271. Avgouropoulos G., Ioannides T., Papadopoulou C., Batista J., Hocevar S., Matralis H.K. (2002), A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalsis Today, 75, pp. 157-167. Bansa R.C., Donnet J.B., Stoeckli H.F.(1988), Active Carbon. Marcel Dekker, New York. Bhatia S.(1990), Zeolite catalysis principles and application, CRC press, Florida. Bond G. C., Thompson D. T.(1999), Catalysis by Gold, Catal, Rev.-Scl. Engineering, 41, pp.319-326. Bonet F., Grugeon S., Urbina R.H., Tekaia-Elhsissen K., Tarascon J.M. (2002), In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases, Solid State Science, 4, pp. 665-670. Bronikowski M. J., Willis P. A., Colbert D. T., Smith K. A., Smalley R. E. (2001), Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal Vacuum Science Technol. A, 19, pp. 1800-1811. Burch R., Ottery D. (1996), Selective catalytic reduction of NOx by hydrocarbons on Pt/Al2O3 catalysts at low temperatures without the formation of N2O, Applied Catalsis B, 9, pp. L19-L24. Burch R., Ottery D. (1997), The selective reduction of nitrogen oxides byhigher hydrocarbons on Pt catalysts underlean-burn conditions, Applied Catalsis B, 13, pp. 105-111. Burgos N., Paulis M., Antxustegi M.M., Montes M. (2002), Deep oxidation of VOCs mixtures with platinum supported on Al2O3/Al monoliths, Applied Catalysis B , 38, pp.251-258. Carotenuto G. (2001), Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size, Applied Organometallic Chemistry, 15, pp.344-352. Caturla F., Molina-Sabio M., Rodrfguez-Reinoso F. (1991), Preparation of Activated Carbon by Chemical Activation with ZnCl2. Carbon, 29, pp. 999-1007. Cheng H. M., Li F., Su G., Pan H. Y., He L. L., Sun X., Dresselhaus M. S. (1998), Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Applied Physics Letters, 72, pp. 3282-3289. Cheng L.S., Yang R.T., Chen N. (1996), Iron Oxide and Chromia Supported on Titania-Pillared Clay for Selective Catalytic Reduction of Nitric Oxide with Ammonia, Journal of Catalysis, 164, pp.70-77. Chiang P.C., You J.H., Chang S.C, Wei Y.H. (1992), Identification of toxic PAH compounds in emitted particulates from incineration of urban solid wastes. Journal of Hazardous materials, 31, pp. 29-37. Chung T.W., Chung C.C.(1999), Increase in the Amount of Adsorption on Modified Activated Carbon by Using Neutron Flux Irradiation. Chemical Engineering Science, 54, pp. 1803-1809. Ci L. J., Li Y. H., Wei B. Q., Liang J., Xu C. L., Wu D. (2000), Preparation of carbon nanofibers by the floating catalyst method, Carbon, 38, pp. 1933-1937. Ci L. J., Rao Z. L., Zhou Z. P., Tang D. S., Yan X. Q., Liang Y. X., Liu D. F. (2002), Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chemical Physics Letters, 359, pp. 63-67. Ci L. J., Wei J. Q., Wei B. Q., Liang J., Xu C., Wu D. (2001), Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 39, pp. 329-335. Ci L. J., Xie S. S., Tang D. S., Yan X. Q., Li Y., Liu Z. Q., Zou X. P., Zhou W., Wang G. (2001), Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts, Chemical physics letters, 349, pp. 191-195. Coloma F., Sepulveda-Escribano A., Fierro J.L.G., Rodriguez-Reinoso F. (1994), Preparation of Platinum Supported on Pregraphitized Carbon-Blacks, Langmuir, 10(3), pp. 750-756. Colomer J. F., Stephan C., Lefrant S., Van Tendeloo G., Willems I., Konya Z., Fonseca A., Laurent C. h., Nagy J. B. (2000), Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chemical Phycics Letters, 317, pp. 83-89. Cronce D.T., Mansour A.N., Brown R.P., Beard B.C.(1997), SeF4 and SF4 Fluorination of BPL Activated Carbon Surfaces. Carbon, 35(4), pp. 483-495. Dai W. L., Chen H., Cao Y., Li H., Xiea S., Fana, K. (2003), Novel economic and green approach to the synthesis of highly active W-MCM41 catalyst in oxidative cleavage of cyclopentene, Chemical Communications, pp. 892-897. Dargo R.S., Jurczyk K., Singh D., Young V.(1995), Low-temperature deep oxidation of hydrocarbons by metal oxides supported on carbonaceous materials, Applied Catalysis B, 6, pp.155-168. Daud W.M.A.W., Ali W.S.W., Sulaiman M.Z. (2003), Effect of activation temperature on pore development in activated carbon produced from palm shell, Journal of Chemical Technology and Biotechnology, 78 (1), pp. 1-10. Evans M.J.B., Halliop E., MacDonald J.A.F.(1999), The Production of Chemically-Activated Carbon. Carbon, 37, pp. 269-274. Froment G.F., Bischoff K.B.(1990), editors, Chemical reactor analysis and design. John Wiley & Sons, Second edition. Gai P.L., Kourtakis K., Ziemecki S. (2000), In site real time environmental high resolution microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in nylon 6,6, Microscopy and Microanalysis (Springer), 6, pp. 335-341. Garetto T. F., Apesteguia C. R. (2000), Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts. Catal. Today, Vol 62, pp.189-199. Girgis B.S., Yunis S.S., Soliman A.M. (2002), Characteristics of activated carbon from peanut hulls in relation to conditions of preparation, Materials Letters, 57 (1), pp. 164-172. Gotz V., Murtaza Z., Lanny D.S. (1999), Ignition in alkane oxidation on noble-metal catalysts, Catalsis Today, 47, pp. 219-228. Gulari E, Güldür C, Sompop S., Somchai O. (1999), Co oxidation by silver cobalt composite oxide. Applied Catalsis A , 182, pp. 147-163. Guo Y., Qi J., Yang S., Yu K., Wang Z., Xu H. (2002). Adsorption of Cr(VI) on micro- and mesoporous rice husk-based active carbon. Materials Chemistry and Physics, 78, pp. 132-137. Hao X. Y., Hang Y. Q. Z , Wang J. W., Zhou W., Zhang C., Liu S.(2006), A novel approach to prepare MCM-41 supported CuO catalyst with high metal loading and dispersion, Microporous and Mesoporous Material, 88 , pp. 38-47. Harriott P., Markussen J.M. (1992), Kinetics of Sorbent Regeneration in the Copper Oxide Process for Flue Gas Cleanup, Industrial Engineering Chemical Reseach, 31, pp. 373-382. Haruta M. (1997), Size- and support-dependency in the catalysis of gold, Catalysis Today, 36, pp. 153-166. Heyes C.J., Irwin J.G., Johnson H.A., Moss R.L. (1982), The Catalytic Oxidation of Organic Air Pollutants. PartⅠ. Single Metal Oxide Catalysts, Journal of Chemical Technology and Biotechnology, 32, pp.1025-1032. Hu Z., Guo H., Srinivasan M.P., Yaming N. (2003). A simple method for developing mesoporosity in activated carbon. Separation and Purification Technology, 31, pp. 47-52. Hu Z., Srinivasan M.P. (2001). Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials, 43, pp. 267-275. Hu Z., Srinivasan M.P., Ni Y.M. (2001), Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon, 39, pp. 877-886. Hu Z., Vansant E.F. (1995), Synthesis and Characterization of a Controlled-Micropore-Size Carbonaceous Adsorbent Produced from Walnut Shell, Microporous Materials, 3, pp. 603-612. Igarashi H., Uchida H., Suzuki M., Sasaki Y., Watanabe M.(1997), Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Applied Catalsis, 159, pp. 159-169. Iijima S. (1991), Nature, 354, pp.56. Jalil P.A. (2004), Investigations on MCM-41 as a fume catalytic incinerator: a heptane case study, Fuel Processing Technolog, 85, pp.1317-1332. Jang J.H., Lee S.C., Kim D.J., Kang M., Choung S.J. (2005), Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx, Applied Catalsis A, 286, pp.36-43. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V. (2002), On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. Journal of Catalsis, 211, pp. 387-397. Lua A.C., Guo J.(2000), Activated Carbon Prepared from Oil Palm Stone by One-Step CO2 Activation for Gaseous Pollutant Removal. Carbon, 38, pp. 1089-1097. Kang M., Song M. W., Lee C. H. (2003), Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts, Applied Catalsis A, 251, pp. 143-156. Kapteijn F., Singoredjo L., Vandriel M., Andreini A., Moulijn J.A., Ramis G., Busca G. (1994), Alumina-Supported Manganese Oxide Catalysts: II. Surface Characterization and Adsorption of Ammonia and Nitric Oxide, Journal of Catalysis, Vol 150, pp105-116. Kurihara L.K., Chow G.M., Schoen P.E. (1995), Nanocrystalline metallic powders and films produced by the polyol method, NanoStructured Materials, 5, pp.607-613. Kus´trowski P., Segura Y., Chmielarz L., Surman J., Dziembaj R., Cool P., Vansant E.F.(2006), VOx supported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O, Catalsis Today, 114, pp.307-313. Lahousse C., Bernier A., Grange P., Delmon B., Papaefthimiou P., Ioannides T., Verykios X. (1998), Evaluation of γ-MnO2 as a VOCs Removal Catalyst: Comparison with a Noble Metal Catalyst, Journal of Catalysis, Vol 178, pp. 214-219. Lee C. J., Lyu S. C., Kim H. W., Park C. Y., Yang C. W. (2002), Large-scale production of aligned carbon nanotubes by the vapor phase growth method , Chemical Physics Letters, 359,1-2 ,pp. 109-114. Leon y Leon C.A., Radovic L.R.(1994), In: Thrower PA, editor, Chemistry and physics of carbon, Vol. 24, New York: Marcel Dekker, pp.213. Li G., Hu L., Josephine M. (2006), Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation, Applied Catalysis A , 301, pp.16-24. Li P., Miser D.E., Rabiei S., Yadav R.T. (2003), The removal of carbon monoxide by iron oxide nanoparticles, Applied Catalsis B, 43, pp. 151-162. Lin H. K., Chiu H. C., Tsai H. C., Chien S. H., Wang C. B. (2003), Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide, Catalsis Letters, 88, pp. 169-174. Lisovskii A., Semiat R., Aharoni C.(1997a), Adsorption of Sulfur Dioxide by Active Carbon Treated by Nitric Acid: I. Effect of the Treatment on Adsorption of SO2 and Extractability of the Acid Formed. Carbon, 35(10-11), pp. 1639-1643. Lisovskii A., Shter. G.E., Semiat R., Aharoni C.(1997b), Adsorption of Sulfur Dioxide by Active Carbon Treated by Nitric Acid: II. Effect of Preheating on the Adsorption of Properties, Carbon, 35, pp. 1645-1648. Liu C.C., Teng H. (2005), Cu/MCM-41 for selective catalytic NO reduction with NH3—comparison of different Cu-loading methods, Applied Catalysis B, 58, pp.69-77. Lojewska J., Kolodziej A., Zak J., Stoch J. (2005), Pd/Pt promoted Co3O4 catalysts for VOCs combustion, Preparation of active catalyst on metallic carrier, Catalysis Today, 105, pp.655-661. Mars P, Van Krevelen DW. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, 3, pp. 41-53. Martin-Gullon A., Prado-Burguete C., Rogriguez-Reinoso F.(1993), Carbon, 31, pp. 1099. Menéndez J.A., Menéndez E.M., Iglesias M.J., García A., Pis J.J.(1999), Modification of the Surface Chemistry of Active Carbons by Means of Microwave-Induced Treatments. Carbon, 37, pp. 1115-1121. Miguel G.S., Fowler G. D., Sollars C.J. (2003), A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon, 41, pp. 1009-1016. Miyazaki A., Balint I., Aika K., Nakano Y. (2001), Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis, Journal of Catalysis, 204, pp. 364-371. Moràn-Pineda M., Castillo S., López T., Cordero-Borboa R.G., Novaro O. (1999), . Synthesis, characterization and catalytic activity in the reduction of NO by CO on alumina–zirconia sol–gel derived mixed oxides. Applied Catalsis B, 21, pp.79-88. Moreno-Cstilla C. and Carrasco-Martin F.(1995), Cobalt catalysts supported on activated carbons: preparation and behaviour in the hydrogenation of carbon oxides, Journal of the Chemical Society. Faraday Transactions (91), pp.3519-3524. Mukhopadhyay K., Mathur G. N. (2002), Bimetallic Catalyst for Synthesizing Quasi-aligned Well Graphitized Multiwalled Carbon Nanotube Bundles in Large Scale by Catalytic Chemical Vapor Deposition Method, Journal Of Nanoscience And Nanotechnology, 2, 2 , pp. 197-213. Nikolaev P., Bronikowski M.J., Bradley R.K., Rohmund F., Colbert D.T., Smith K.A., Smalley R.E. (1999), Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, 313, pp. 91-97. Okasfe, O. and Bosch, H. (1980). The Production and Characteriation of Activated Carbon from India, March, 31, pp. 3-10. Omata K., Kobayashi Y., Yamada M.(2005), Artificial neural network-aided development of supported Co catalyst forpreferential oxidation of CO in excess hydrogen. Catalsis Communications, 6, pp. 563-571. Oran U., Uner D. (2004), Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts, Applied Catalsis B, 54, pp. 183-191. Parvulescu V., Su B.L. (2001), Iron, cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons, Catalsis Today, 69, pp. 315-322. Pérez-Hernández R., Aguilar F., Gómez-Cortés A., Díaz G. (2005), NO reduction with CH4 or CO on Pt/ZrO2-CeO2 catalysts. Catalsis Today, 107-108, pp. 175-180. Radovic L.R., Rodríguez-Reinoso F. In: Thrower P.A., editor. (1997), Chemistry and Physics of Carbon, New York: Marcel Dekker (25), pp.243. Ren X., Liang J., Wang J. (2006), H-MCM-22 zeolitic catalysts modified by chemical liquid deposition for shape-selective disproportionation of toluene, Journal of Porous Material, 13, pp. 353-359. Robau-Sa´nchez A., Aguilar-Elgue´zabal A., Aguilar-Pliego J. (2005). Chemical activation of Quercus agrifolia char using KOH: Evidence of cyanide presence. Microporous and Mesoporous Materials, 85, pp. 331-339. Rodríguez-Reinoso F. In: Lahaye J, Ehrburgor P, editors,(1991), Fundamental Issues in Control of Carbon Gasification Reactivity, Kluwer Academic, PP. 533. Rodríguez-Reinoso F.(1995), Porosity in Carbons: Characterization and Application, ed. J.W. de Patrick. Edward Arnold, London, pp.253. Rodríguez-Reinoso F., Molina-Sabio, M. (1992), Activated Carbons from Lignocellulosic Materials by Chemical and/or Physical Activation: An Overview, Carbon, 30, pp. 1111-1118. Rodríguez-Reinoso F., Rogríguez-Ramos I., Moreno-Gastilla C., Guerrero-Ruiz A., López-Gonázlez J.D.(1986), Journal of Catalysis (99), pp.171. Rodríguez-Reinoso, F. (1998), The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), pp. 159-175. Satishkumar B. C., Govindaraj A., Rahul Sen, Rao C. N. R. (1998), Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chemical Physics Letters, 293, pp. 47-52. Satishkumar B. C., Govindaraj A., Rao C. N. R. (1999), Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ, Chemical Physics Letters, 307, pp. 158-162. Satterfield (1980), C.N. Heterogenous Catalysis in Practice, McGraw-Hill, New York. Satterfield C. N.(1991), 2nd ed. McGraw Hill, New York. Scharff, P. (1998), New Carbon Materials for Research and Technology. Carbon, 36(5-6), pp. 481-486. Shen W., Dong X., Zhu Y., Chen H., Shi J. (2005), Mesoporous CeO2 and CuO-loaded mesoporous CeO2 : Synthesis, characterization, and CO catalytic oxidation property, Microporous and Mesoporous Materials, 85, pp. 157-162. Stoeckli, H.F. (1990), Microporous Carbons and Their Characterization The Present State-of-The-Art. Carbon, 28, pp. 1-9. Szegedi A., Hegedu M., Margitfalvi J. L., Kiricsi I. (2005), Low temperature CO oxidation over iron-containing MCM-41 catalysts, Chemical Communications, pp. 1441-1448. Tang X., Zhang B., Li Y., Xu Y., Xin Q., Shen W. (2004), Carbon monoxide oxidation over CuO/CeO2 catalysts, Catalsis Today, 93-95, pp. 191-198. Teng H., Hsu L.Y. (1998), Preparation of Activated Carbons from Bituminous Coals with Zinc Chloride Activation, Industrial and Engineering Chemistry Research, 37, pp. 58-69. Tom V., T. Alexander N., Karin J., Yaying J., Wim B., Sergei N., Yasuo I., Muriel L. (2005), Promotion Effects in the Oxidation of CO over Zeolite-Supported Pt Nanoparticles, Journal of Physical Chemistry B, 109, pp. 3822-3885. Tomkov K., Siemieniewska T., Czechowski F., Jankowska A. (1977), Formation of Porous Structures in Activated Brown-Coal Chars Using O2、CO2 and H2O as Activating Agents. Fuel, 56, pp. 121-128. Tseng H.H., Wey M.Y., Lin C.L., Chang, Y.C.(2002b, November), Pore structure effects on Ca-based sorbents sulfation capacity at medium temperatures: Activated carbon as sorbent/catalyst support, J. of Air and Waste Management Association, 52, pp. 1281-1287. Tseng H.H., Wey, M.Y., Lu C.Y.(2002c), The study of modified calcium hydroxides with surfactants for acid gas removal during incineration, Environmental Technology, 23, pp. 109-118. Tu C.H., Wang A.O., Zheng M.Y., Wang X.D., Zhang T. (2006), Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation, Applied Catalysis A, 297, pp.40-47. Vetrivel S., Pandurangan A. (2005), Oxidative property of Nb-containing MCM-41 molecular sieves for vapor phase oxidation of m-toluidine, Catalsis Letters, 99, pp. 141-147. Viau G., Toneguzzo P., Pierrard A., Acher O., Fievet-Vincent F., Fievet F. (2001), Heterogeneous nucleation and growth of metal nanaoparticles in polyols. Scripta materials,44 , pp. 2263-2271. Wang X., Yang X., Wu Y. (1998), Catalytic behavior of Pd/C in the NOx removal reaction. React, Kinet. Catalsis Letters, 64, pp. 309-315. Ward W.J. (1984), Molecular sieve catalysts, in applied industrial catalysis, Vol.3, Academic press, New York. Wey M.Y., Chao C.Y., Wei M.C., Yu L.J., Liu Z.S. (2000), The influence of heavy metals on partitioning of PAHs during incineration. Journal of Hazardous materials, A77, pp. 77-87. Wey M.Y., Chen J.C., Yang W.Y., Huang H.C.(2002b), Catalytic oxidation of organic compounds in incineration flue gas by a commercial Palladium catalyst, J. of Air and Waste Management Association, 52, pp. 449-456. Wey M.Y., Lu C.Y., Tseng H.H., Fu, C.H.(2002c), The Utilization of Catalyst-Sorbent in Scrubbing Acid Gases from Incineration Flue Gas, J. of Air and Waste Management Association, 52, pp. 475-483. Wey M.Y., Peng C.Y., Wu H.Y., Chiang B.C.(2002a), Effects of different additives on the performance of semi-dryer during incineration process, Environmental Technology, 23, pp. 675-684. Wigmans T. (1989), Industrial Aspects of Production and Use of Activated Carbons. Carbon, 27, pp. 13-22. Williams P.T., Reed A.R. (2006), Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass and Bioenergy, 30, pp. 144-152. Wu F.C., Tseng R.L., Hu C.C. (2005), Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials, 80, pp. 95-106. Wu J.C.S., Lin Z.A., Tsai F.M., Pan J.W. (2000), Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts, Catalsis Today, 63, pp. 419-426. Xu X., Li J., Hao Z., Zhao W., Hu C. (2006), Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation, Materials Research Bulletin, 41, pp. 406-413. Yang R.T. (1998), Tharappiwattananon, N., Long, R.Q., Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen, Applied Catalysis B, 19, pp. 289-304. Yang R.T., Li W., Sirilumpen M. (1997), Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays, Applied Catalysis B, 11, pp.347-363. Yang R.T., Li W.B. (1995), Ion-Exchanged Pillared Clays: A New Class of Catalysts for Selective Catalytic Reduction of NO by Hydrocarbons and by Ammonia, Journal of Catalysis, Vol 155, pp. 414-417. Zeng X. S., Sun X. G., Cheng G., Yan X. S., Xu X. L. (2002), Production of multi-wall carbon nanotubes on a large scale, Physica B, 323, pp. 330-332. Zhang R., Schwarz T. A. (1992), Design of inhomogeneous metal distributions within catalyst particles, Applied Catalysis A, 91, pp.57-65. Zhn H. W., Xu C. L., Wei B. Q., Wu D. (2002), Changes in pore properties of phenol formaldehyde-based carbon with carbonization and oxidation conditions, Carbon , 40, pp. 2003-2012. Zhou G, Jiang Y, Xei H, Qiu F. (2005), Non-noble metal catalyst for carbon monoxide selective oxidation in excess hydrogen. Chemical Engineering Journal, 109, pp. 141-145. Zhou Z. P., Ci L. J., Chen X. H., Tang D. S., Yan X. Q., Liu D. F., Liang Y. X., Yuan H. J., Zhou W., Wang G., Xie S. S. (2003), Controllable growth of double wall carbon nanotubes in a floating catalytic system, Carbon, 41, pp. 337-342. Zhu H. W., Li X. S., Xu C. L., Wu D. (2002), Co-synthesis of single-walled carbon nanotubes and carbon fibers, Materials Research Bulletin, 37, pp. 177-183. 尹邦躍,“奈米時代”,五南圖書出版股份有限公司,台北市(2003)。 申永順,顧洋,“以高級氧化程序處理空氣中揮發性有機污染物之研究與應用,工業污染防治,第14 卷,第56 期, (1995)。 江旭禎,”儀器總覽:化學分析儀器”,國科會,第77-79頁,(1999) 吳立偉,“以MnO/Fe2O3觸媒焚化處理甲硫醇與乙硫醇之研究”碩士論文,國立成功大學化學工程研究所,台南,(1996)。 吳國卿,以奈米金觸媒去除空氣中污染物(CO、O3),奈米技術於環境領域應用及相關議題論壇(I),行政院環境保護署(2003)。 洪文雅,“揮發性有機廢氣處理技術簡介” 台灣環保產業雙月刊,第21期,(2003)。 陳均衡,“以MnO/Fe2O3觸媒焚化處理丙烯晴之研究”碩士論文,國立成功大學化學工程研究所,台南,(1997)。 陳淨修,楊慶熙,“台灣地區有害空氣污染物管制”,工業污染防治,第52 卷, (1994)。 曾庭科,“以MnO/Fe2O3觸媒焚化處理苯乙烯之研究”碩士論文,國立成功大學環境工程研究所,台南,(1998)。 黃世忭,“以化學氣相沉積法定向成長奈米碳管之研究” 淡江大學機械與機電工程研究所,碩士論文,(2003) 黃振家,”揮發性有機廢棄物處理技術:活性碳吸附”,化工,第44卷第3期,p49-59,(1997)。 楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工系,碩士論文,(2000)。 葉家伶,“以三向觸媒同時處理焚化廢氣中有機污染物、CO 及NOX之研究” 國立中興大學環境工程研究所,碩士論文,(2002)。 劉東茂,“苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究”,國立中央大學化學工程與材料工程研究所,碩士論文,(2005) 劉國棟,“VOC管制趨勢展望”,工業污染防治,第10 卷,第48期,pp.13-51,(1993) 蔡文田、張慶源,「揮發性有機物污染預防技術」,環保資訊,一月,p35~41,(1997)。 盧啟元,吸附劑/觸媒應用於乾式洗滌法處理焚化廢氣SO2之研究,碩士論文,國立中興大學環境工程系,台中(2001)。
摘要: 去除氣狀污染物時,氣體分子的有效擴散係數取決於擔體的孔隙半徑,因此若能增加觸媒擔體的平均孔徑,將可: (1)提升觸媒製備過程中金屬前驅物離子於孔洞內的擴散行為,提高活性相於擔體上的分散性; (2)增加反應過程時對氣體分子的吸附能力,使得中、小粒徑的氣體分子可以順利擴散至孔洞內與活性相進行催化反應,進而提升觸媒的反應效率。因此本研究將著重於中孔洞觸媒擔體的製備,比較活性碳、奈米碳管等不同孔洞結構擔體所組成的觸媒之催化活性,並輔以BET、XRPD、EA、FESEM、EDS、TEM、ICPMS、FTIR等進行特性分析。 研究結果指出,碳擔體觸媒適用於溫度<300℃之反應環境,其反應活性依序為:奈米碳管觸媒>中孔洞活性碳觸媒>微孔洞活性碳觸媒。微孔洞活性碳擔體觸媒在進行催化反應時,於250℃易產生燒失作用而降低觸媒反應活性;中孔洞稻殼活性碳作為擔體使用時,則因活性相於中孔洞擔體上呈現高分散性,增進反應效率及降低燒失作用發生之機會。使用奈米碳管作為擔體時,由於奈米碳管所具有的熱/化學穩定性,使得於催化反應表現上較活性碳擔體觸媒佳。 於觸媒製備方法使用上,多元醇法應用於高表面積之微孔洞活性碳觸媒製備時,可有效控制活性相大小、形狀,並提升活性相之高分散性,而改善以含浸法製備之活性碳擔體觸媒易產生的燒失情形,維持觸媒之反應活性,金屬銅前驅物之選擇依序為:硝酸銅>醋酸銅>硫酸銅;當使用中孔洞奈米碳管作為擔體時,多元醇法則不再具製備優勢,由於奈米碳管本身為奈米尺度之材料,在進行觸媒製備時,可以提升活性相之分散性及獲得奈米大小之活性相。因此,以傳統之含浸法即可製備反應活性佳之奈米碳管擔體觸媒。
Effective diffusion coefficients of gaseous molecules were decided by the porous diameter of the catalyst supports, while removing the gas pollutants. In the present case, the raising of average pore size diameter results: (1) the diffusion of metal precursors into the pores were improved during the catalyst preparation, and the active sites dispersion on the catalyst would be better; (2) the medium and small gaseous molecules were easily diffused into the pores to react with active sites, as a result the adsorption capacity of the catalyst was increases and the catalytic efficiency was enhanced. This research was mainly focused on the preparation of mesoporous catalysts, and compared the catalytic activity of active carbon (AC) supported catalyst with carbon nanotube (CNT) supported catalyst. Characterization of catalyst was done by using the techniques BET, XRPD, EA, FESEM, EDS, TEM, ICPMS, and FTIR. The experimental results show that the suitable reaction environment for carbon supported catalysts was less than 300 оC. The order of catalytic activity of the catalysts was follows: CNT catalyst > mesoporous AC catalyst > microporous AC catalyst. The catalyst burning off was occurred when the microporous catalyst reacted with reactants at 250 оC, and then the catalytic activity was decreased. When the mesoporous AC (derived from rice shell) was used as catalyst support, the reaction efficiency was improved, and the catalyst burning off opportunity was reduced due to highly dispersion of active sites on the catalyst. The performance of CNT catalyst was better than AC catalyst with good thermo/chemical stabilization. During the preparation of microporous catalyst, the particle size, shape and dispersion of active sites were easily controlled by polyol method. Furthermore, the burning off of AC catalyst was compared with impregnation method. The good choice for metal copper precursors with polyol process was in the order of copper nitrate> copper acetate > copper sulfate. However, the advantage of polyol method was disappeared while CNT was chosen as a support to prepare catalyst. This was due to the well dispersion of nanosized active sites obtained from CNT on catalyst by impregnation method. The good performance of CNT catalyst was achieved easily through impregnation method.
URI: http://hdl.handle.net/11455/5271
其他識別: U0005-1206200707562900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1206200707562900
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.