Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5274
標題: 元素鐵濾床結合過氧化氫去除地下水中五氯酚之研究
Removal of Pentachlorophenol in Groundwater by Zero-Valent Iron Filter Coupled with Hydrogen Peroxide
作者: 高福助
Kao, Fu-Chu
關鍵字: pentachlorophenol
五氯酚
zero valent iron
dechlorination
零價鐵
脫氯
出版社: 環境工程學系所
引用: 王應然,五氯酚及其代謝產物四氯對苯二酚毒性作用之分子機轉,博士論文,國立台灣大學 (1995)。 行政院環境保護署,1998/6/24,環境基準表(1998)。<http://www.epa.gov.tw/main/index.asp>於2007/4/24 上網瀏覽。 行政院環境保護署,2001/11/21,地下水污染管制標準 (2001a)。<http://ww2.epa.gov.tw/SoilGW/page03/sites_info/company/Total.htm>於2007/4/24 上網瀏覽。 行政院環境保護署,2001/11/21,土壤污染管制標準 (2001b)。<http://ww2.epa.gov.tw/SoilGW/page03/sites_info/company/Total.htm>於2007/4/24 上網瀏覽。 行政院環境保護署,2003/11/26,放流水標準 (2003b)。<http://www.epa.gov.tw/main/index.asp>於2007/4/24 上網瀏覽。 行政院環境保護署,2003/3/19,全國已公告為土壤及地下水污染控制場址(工廠與非法棄置場部分) (2003a)。 < http://ww2.epa.gov.tw/soilgw/site1.asp >於2007/4/24 上網瀏覽。 行政院環境保護署,2003/4/8,毒理資料庫查詢 (2003c)。<http://ivy2.epa.gov.tw/toxic/prog/database1.asp>於2007/4/24 上網瀏覽。 行政院環境保護署,2006/12/14,有害事業廢棄物認定標準 (2006)。 < http://www.epa.gov.tw/main/index.asp>於2007/4/24 上網瀏覽。 行政院環境保護署,2007/4/24,全國已公告為土壤及地下水污染控制場址(2007)。<http://ww2.epa.gov.tw/soilgw/site1.asp >於2007/4/24 上網瀏覽。 阮國棟等,”天然衰減法”整治土壤及地下水污染之技術內涵與案例研究,工業污染防治,第71 期,第87-102頁 (1999)。 林財富等,受污染場址現地化學處理方法介紹,工業污染防治,第72 期,第178-200頁 (1999)。 林畢修平等,環境中含氯有機污染源生物復育之可行性介紹,微生物與環境荷爾蒙研討會論文集,第66-84頁 (2000)。 物質安全資料表 (2007),<http://www.iosh.gov.tw/data/f11/n533.htm>。 國際癌症研究局,<http://www.iarc.fr/index.html>。 張碧芬,氯酚化合物在土壤中生物分解之研究,行政院國家科學委員會專題研究計畫成果報告 (1996)。 曾聖倫,貴金屬提高二氧化鈦對五氯酚光催化效應之研究,碩士論文,國立屏東科技大學環境工程與科學系研究所 (2004)。 黃秋嫆,固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究,碩士論文,國立中興大學環境工程學研究所 (1993)。 葉玉雯,比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究,碩士論文,國立中興大學環境工程學研究所 (1999)。 楊茱芳,五氯酚分解菌之分離與及其生理特性研究,碩士論文,國立中興大學環境工程學研究所 (2003)。 廖宏慈,氯酚醌類衍生物誘發DNA 損害作用之研究,碩士論文,國立中興大學環境工程學研究所 (2001)。 劉瑞美等,利用土壤微生物降解土壤中有機物染物。土壤肥料通訊,第54 期,第13~16 頁 (1996)。 盧至人譯,地下水的污染整治,國立編譯館 (1998)。 謝立生等譯,環境工程化學,乾泰圖書公司 (1988)。 Agrawal, A., and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal ,” Environmental Science & Technology, Vol. 30, pp. 153-160 (1996). Allen-King, R. M., R. M. Halket, and D. R. Burris, “Reductive Transformation and Sorption of Cis- and Trans-1,2-Dichloroethene in A Metallic Iron-Water System,” Environmental Toxicology and Chemistry, Vol. 16, pp. 424-429 (1997). Arcand, Y., J. Hawari, and S. R. Guiot, “Solubility of Pentachlorophenol in Aqueous Solutions: The pH Effect,” Water Research, Vol. 29, pp. 131-136 (1995). Barbeau, C., L. Desch&ecirc;nes, D. Karamanev, Y. Comeau, and R. Samson, “Bioremediation of Pentachlorophenol-contaminated Soil by Bioaugmentation Using Activated Soil.” Applied Microbiology and Biotechnology, Vol. 48, pp. 745-752 (1997). Barbeni, M., C. Minero, E. Pelizzetti, E. Borgarello, and N. Serpone, “Chemical Degradation of Chlorophenols with Fenton’s Reagent,” Chemosphere, Vol. 16, pp. 2225-2237 (1987). Ben&iacute;tez, F. J., J. Beltr&aacute;n-Heredia, J. L. Acero, and F.J. Rubio, “Chemical Decomposition of 2,4,6-Trichlorophenol by Ozone Fenton’s Reagent, and UV Radiation,” Industrial & Engineering Chemistry Research, Vol. 38, pp. 1341-1349 (1999). Bergendahl, J. A., and T. P. Thies, “Fenton’s Oxidation of MTBE with Zero-Valent Iron,” Water Research, Vol. 38, pp. 327-334 (2004). Bier, E. L., J. Singh, Z. Li, S. D. Comfort, and P. J. Shea, “Remediating Hexahydro-1,3,5Trinitro-1,2,5-Trazine-Contaminated Water and Soil by Fenton Oxidation,” Environmental Toxicology and Chemistry, Vol. 18, pp. 1078-1084 (1999). Bigg, T., and S. J. Judd, “Zero-Valent Iron for Water Treatment,” Environmental Technology, Vol. 21, pp. 661–670 (2000). Blowes, D. W., C. J. Ptacek, S. G. Benner, K. R. Waybrant, and J. G. Bain, “Porous Reactive Walls for The Prevention of Mine Drainage: A Review,” Environmental Science & Technology, Vol. 31, pp. 3348-3357 (1997). Boussahel, R., D. Harik, M. Mammar, and S. Lamara-Mohamed, “Degradation of Obsolete DDT by Fenton Oxidation with Zero-Valent Iron,” Desalination, Vol. 206, pp. 369-372 (2006). Buhler, D. R., M. E. Rasmusson, and H. S. Nakave, “Occurrence of Hexachlorophene and Pentachlorophenol in Sewage and Water,” Environmental Science & Technology, Vol. 7, pp. 929-934 (1973). Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Tricholroethylene and Tetracholroethylene in a Batch Reactive Metallic Iron-Water System,” Environmental Science & Technology, Vol. 29, pp. 2850-2855 (1995). Buxton, G. V., and C. L. Greenstock, “Critical Review of Rate Constants for Reactions of Hydrated Electrons,” Journal of Physical Chemistry, Vol. 17, pp. 513-886 (1988). Cantrell, K.J., D.I. Kaplan, and T.J. Gilmore, “Injectio of Colloidal Fe0 Parcitles in Sand with Shear-Thinning Fluids,” Journal of Environmental Engineering, Vol. 123, pp. 786-791 (1997). Chamarro, E., A. Marco, and S. Esplugas, “Use of Fenton Reagent to Improve Organic Chemical Biodegradability,” Water Research, Vol. 35, pp. 1047-1051 (2001). Chen, C. T., A. N. Tafuri, M. Rahman, and M. B. Forest, “Chemical Oxidation Treatment of Petroleum Contaminated Soil Using Fenton’s Reagent, ” Journal of Environmental Science and Health A33, pp. 987-1008 (1998). Chen, J., D. F. Ollis, W. H. Rulkens, and H. Bruning, “Kinetic Processes of Photocatalytic Mineralization of Alcohols on Metallized Titanium Dioxide,” Water Research, Vol. 33, pp. 1173-1180 (1999). Clark, C. J., P. S. C. Rao, and M. D. Annable, “Degradation of Perchloroethylene in Cosolvent Solutions by Zero-Valent Iron,” Journal of Hazardous Materials, Vol. 96 , pp. 65-78 (2003). Cole, J. D., S. L. Woods, and T. R. Bricker, “Pentachlorophenol Reductive Dechlorination in an Interceptor Trench: Temperature Effects,” Ground Water, Vol.34, pp784-790 (1996). Crosby, D. G., “Environmental Chemistry of Pentachlorophenol,” Pure & Applied Chemistry, Vol. 53, pp. 1051-1080 (1981). Davis, A., J. Campbell, C. Gilbert, M. V. Ruby, M. Bennett, and S. Tobin, “Attenuation and Biodegradation of Chlorophenols in Groundwater at a Former Wood Treating Facility,” Groundwater, Vol. 32, pp. 248-257 (1994). De Laat, J., and H. Gallard, “Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solutions: Mechanism and Kinetic Modelling,” Environmental Science & Technology, Vol. 33, pp. 2726-2732 (1999). Den, W., M. Pirbazari, C. C. Huang, and K. P. Shen, “Technology Review for Vapor Phase Biofiltration Part I:Technology Development and Application,” Journal of Chinese Institute of Environmental Engineering, Vol. 8, pp. 159-179 (1998). Fenster, D. E., “Hazardous Waste Laws, Regulations, and Taxes for The U.S. Petroleum Refining Industry,” PennWell Publishing Co., Tulsa, Okla (1990). Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Ground-Water Remediation Technologies Analysis Center, TE-98-02 (1998). Freeman, H. M., “Standard Handbook of Hazardous Waste Treatment and Disposal.,” McGraw-Hill Book Co., New York (1989). Gau, S. H., and F. S. Chang, “Improved Fenton Method to Remove Recalcitrant Organics in Landfill Leachate,” Water Science and Technology, Vol. 34, pp.455-462 (1996). Ghaly, M. Y., G. Ha&Egrave; rtel, R. Mayer, R. Haseneder, “Photochemical Oxidation of p-Chlorophenol by UV/H2O2 and Photo-Fenton Process. A Comparative Study,” Waste Management, Vol. 21, pp. 41-47 (2001). Gillham, R. W., and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, Vol. 32, pp. 958-967 (1994). Goerlitz, D. F., D. E. Troutman, E. M. Godsy, and B. J. Franks, “Migration of Wood-Preserving Chemicals in Contaminated Groundwater in A Sand Aquifer at Pensacola,” Environmental Science, Vol. 19, pp. 955-961 (1985). Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron,” Environmental Progress, Vol. 16, pp. 137-143 (1997). Hager, D. G., “Innovatuve Hazardous Waste Treatment,” Technology Series, Vol. 2, pp. 143-153 (1990). Hua, I., R. H. Hochemer, and M. R. Hoffmann, “Sonolytic Hydrolysis of p-Nitrophenyl Acetate: The Role of Supercritical Wat,” Journal of Physical Chemistry, Vol. 99, pp. 2335-2342 (1995). Huang, Y. H., C. C. Chen, G. H. Huang, S. S. Chou, “Comparison of A Novel Electro-Fenton Method with Fenton’s Reagent in Treating a Highly Contaminated Wastewater,” Water Science and Technology Vol. 43, pp. 17-24 (2001). Hung, H., and M. R. Hoffmann, “Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound,” Environmental Science & Technology, Vol. 32, pp. 3011-3016 (1998). Inmaculada, C., S Dolores, R. Sloedad, and P. B. Dolores, “Chemical Degradation of Aromatic Amines by Fenton’s Reagent,” Water Research, Vol. 31, pp. 1985-1995 (1997). Kang, S. F., C. H. Liao, and H. P. Hung, “Peroxidation Treatment of Dye Manufacturing Wastewater in the Presence of Ultraviolet Light and Ferrous Ions,” Journal of Hazardous Materials, Vol. 65, pp. 317-333 (1999). Kang, S. F., C. H. Liao, and M. C. Chen, “Pre-Oxidation and Coagulation of Textile Wastewater by the Fenton Process,” Chemosphere, Vol. 46, pp. 923- 928 (2002). Kim, Y. H., and E. R. Carraway, “Dechloroination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons,” Environmental Science & Technology, Vol. 34, pp. 2014-2017 (2000). Kiwi, J., C. Pulgarin, and P. Peringer, “Effect of Fenton and Photo-Fenton Reactions on the Degradation and Biodegradability of 2 and 4-Nitrophenol in Water Treatment,” Applied Catalysis B: Environment, Vol. 3, pp. 335-350 (1994). Kwon, B. G., D. S. Lee, N. Kang, and J. Yoon, “Characteristics of p-Chlorophenol Oxidation by Fenton’s Reagent,” Water Research, Vol. 33, pp. 2110-2118 (1999). Lelacheur, R. M. and W. H. Glaze, “Reactions of Ozone and Hydroxy1 Radicals with Serine,” Environmental Science & Technology, Vol. 30, pp. 1072-1080 (1996). Li, Z. M., S. D. Comfort, and P. J. Shea, “Destruction of 2,4,6-Trinitrotoluene by Fenton Oxidation,” Journal of Environment, Vol. 26, pp. 480-487 (1997). Lipczynska-Kochany, E., G. Sprah, and S. Harms, “Influence of Some Groundwater and Surface Waters Constitutes on the Degradation of 4-Chlorophenol by the Fenton Reaction,” Chemosphere, Vol. 30, pp. 9-20 (1995). Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup,” International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997). Lu, M. C., J. N. Chen, and C. P. Chang, “Oxidation of Dichlorvos with Hydrogen Peroxide Using Ferrous Ion as Catalyst,” Journal of Hazardous Materials, Vol. 65, pp. 277-288 (1999). Lu, M. C., J. N. Chen, C. P. Chang, “Effect of Inorganic Ions Oxidation of Dichlorvos Insecticide with Fenton’s Reagent,” Chemosphere, Vol. 35, pp. 2285-2293(1997). Marc, P. T., V. G. Molina, M. A. Ba&ntilde;os, J. Gim&eacute;nez, S. Esplugas, “Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review,” Applied Catalysis B: Environmental, Vol. 47, pp. 219–256 (2004). Matheson, L. J.,and P. G. Tratnydk, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental Science & Technology, Vol. 28, pp. 2045-2053 (1994). McCarthy, D. L., S. Navarrtet, W. S. Willett, P. C. Babbitt, and S. D. Copley, “Exploration of the Relationship Between Tetrachlorohydroquinone Dehalogenase and the Glutathione S-transferase Superfamily,” Biochemistry, Vol. 35, pp. 14634-14642 (1996). Mecozzi, R., L. D. Plama, D. Pilone, and L. Cerboni, “Use of EAF Dust as Heterogeneous Catalyst in Fenton Oxidation of PCP Contaminated Wastewaters,” Journal of Hazardous Materials B, Vol. 137, pp. 886-892 (2006). Mueller, J. G., P. J. Chapman, and P. H. Pritchard, “Creosote-Contaminated Sites,” Environmental Science & Technology, Vol. 23, pp. 1197-1201 (1989). Muftikian, R., Q. Fernando, and N. Korte, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water,” Water Research, Vol. 29, pp. 2434-2439 (1995). Nam, K., W. Rodriguez, and J. J. Kukor, “Enhanced Degradation of Polycyclic Aromatic Hydrocarbons by Biodegradation Combined with a Modified Fenton Reaction,” Chemosphere, Vol. 45, pp. 11-20 (2001). Nowosielski, B. E., “Experimental Study of Octanol-Water Partition Coefficients for 2,4,6-trichlorophenol and pentachlorophenol: Derivation of an Empirical Model of Chlorophenol Partitioning Behavior,” Applied Geochemistry, Vol. 13, pp 893-904 (1998). Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environmental Science & Technology, Vol. 30, pp. 66-71 (1996). Pignatello, J. J., “Dark and Photoassisted Fe3+-catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide.” Environmental Science & Technology, Vol. 26, pp. 944-951 (1992). Pignatello, J. J., M. M. Martinson, J. G. Steiert, R. E. Carlson, and R. L. Crawford, “Biodegradation and Photolysis of Pentachlorophenol in Artificial Freshwater Streams,” Applied and Environmental Microbiology, Vol. 46, pp. 1024-1031 (1983). Pratap, K. and A. T. Lemley, “Fenton Electrochemical Treatment of Aqueous Atrazine and Metolachlor. ” Journal of Agricaltural and Food Chemistry, Vol. 46, pp. 3285-3291 (1998). Richard, L., L. Bastiaens, B. Brigitte, M. Maesen, J. Gemoets, and L. Diels, “Batch-test Study on the Dechlorination of 1,1,1-Trichloroethane in Contaminated Aquifer Material by Zero-Valent Iron,” Journal of Contaminant Hydrology, Vol. 74, pp. 133-144 (2004). Sedlak, D. L. and A. W. Andren, “Oxidation of Chlorobenzene with Fenton’s Reagent.” Environmental Science & Technology, Vol. 25, pp. 777-782 (1991). Seriler, J. P., “Pentachlorophenol,” Mutation Research, Vol. 257, pp. 27-47 (1991). Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Water Research, Vol. 30, pp. 2315-2322 (1996). Su, C., and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science & Technology, Vol. 33, pp. 163-168 (1999). Sun, Y., S. D. Comfort, and P. J. Shea, “Photochemical Reactions Involved in the Total Mineralization of 2,4-D by Fe3+/H2O2/UV,” Environmental Science & Technology, Vol. 27, pp. 304-310 (1993). Tang, W. Z., and C. P. Hung, “The Effect of Chlorine Position of Chorinated Phenols on their Dechlorination Kinetics by Fenton’s Reagent, “Waste Management, Vol. 15, pp.615~622 (1995). Teel, A. L., C. R. Warberg, D. A. Atkinson, and R. J. Watts, “Comparison of Mineral and Soluble Iron Fenton’s Catalysts For the Treatment of Trichloroethylene.” Water Research, Vol. 35, pp. 977-984 (2001). U. S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents,” US Army Corps of Engineers, DG 1110-345-11(1997). U. S. EPA, “An Overview of Underground Storage Tank Remediation Options ” Office of Solid Waste and Emergency Response, 5403W, EPA/510/F-93/029 (1993). U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation,” Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125 (1998). Vallecillo, A., G. Encina, and M. Pe&ntilde;a, “Anaerobic Biodegradability and Toxicity of Chlorophenols.” Water Science and Technology, Vol. 40, pp. 161-168 (1999). Ventura, A., G. Jacquet, A. Bermond, V. Camel, “Electrochemical Generation of the Fenton’s Reagent Application to Atrazine Degradation,” Water research, Vol.36, pp. 517-522 (2002). Walling, C., “Fenton’s Reagent Revisited,” Account of Chemical Research, Vol. 8, pp. 121-131 (1975). Walling, C., and A. Goosen, “Mechanism of the Ferric Ion Catalysed Decomposition of Hydrogen Peroxide: Effects of Organic Substrate, ” Journal of American Chemical Society, Vol. 95, pp. 2987-2991 (1973). Wanger, T., “In Our Backyard A Guide to Understanding Pollution and its Effects, ” Van Nostrand Reinhold, New York (1994). Wightman, P. G., and J. B. Fein, “Experimental Study of 2,4,6 -Trichlorophenol and Pentachlorophenol Solubilities in Aqueous Solutions: Derivation of a Speciation-Based Chlorophenol Solubility Model,” Applied Geochemistry, Vol. 14, pp 319-331 (1999). Wink, D.A., R.W. Nims, and P.C. Ford, “Oxidizing Intermediates Generated in the Fenton Reagent: Kinetic Arguments Against the Intermediacy of the Hydroxyl Radical,” Environmental Health Perspectives, Vol. 102, pp. 11-15 (1994). Wust, W. F., R. Kober, O. Schlicker, and A. Dahmke, “Innovative Technology Description,” Environmental Science & Technology, Vol. 33, pp. 4304-4309 (1999). Yang, Mu, H. Q. Yu , J. C. Zheng, S. J. Zhang, and G. P. Sheng, “Reductive Degradation of Nitrobenzene in Aqueous Solution by Zero-Valent Iron,” Chemosphere, Vol. 54, pp. 789-794 (2004). Yoon, J., Y. Lee, and S. Kim, “Investigation of the Reaction Pathway of OH Radicals Produced by Fenton Oxidation in the Conditions of Wastewater Treatment, ” Water Science and Technology, Vol. 44, pp. 15-21 (2001). Zawaideh, L. L., and T. C. Zhang, “The Effects of pH and Addition of an Organic Buffer (HEPES) on Nitrate Transformation in Fe-Water Systems”, Water Science And Technology, Vol. 38, pp. 107-115 (1998). Zhang, Z., Q. Xiang, H. Glatt, K. L. Platt, B. D. Goldstein, and G. Witz, “Studies on Pathways of Ring Opening of Benzene in a Fenton System.” Free Radical Biology & Medicine, Vol. 18, pp. 411-419 (1995).
摘要: 本研究以零價鐵濾床結合過氧化氫進行水中五氯酚降解之研究,研究內容包含零價鐵濾床對五氯酚之脫氯效果,以及過氧化氫添加後所形成之Fenton反應對五氯酚進一步之破壞去除,並且利用連續批次實驗探討零價鐵濾床在長時間操作下對五氯酚降解之變化,最後再進行實驗數據之整理,推算五氯酚降解之動力模式及總有機碳去除之動力模式,並且估算氯離子脫除量是否符合理論範圍。 實驗所使用之水相五氯酚萃取方法為液-液相萃取法,以正己烷進行萃取,再經氣相層析儀/火焰離子偵測器進行分析,經回收率測試後發現回收率可達96.5 %。背景實驗的結果發現,零價鐵濾床可以有效降解水中的五氯酚,且去除率可達58 %,實驗中過氧化氫濃度分別為25、50、100 mg/L,在進流端添加時五氯酚去除率及礦化率以50及100 mg/L時較佳,而25 mg/L可能由於過氧化氫添加濃度不足,在濾床內便被大量消耗所致;在出流端添加時五氯酚去除率及礦化率以100 mg/L> 50 mg/L> 25 mg/L。以不同過氧化氫添加位置發現,五氯酚水樣在出流端添加過氧化氫時具有較佳結果。由過氧化氫添加實驗之結果發現,五氯酚去除率及礦化率以出流端添加,且濃度為100 mg/L時有最佳效果,並且可以由結果中獲得五氯酚水樣在出流承接容器中之最佳停留時間為100分鐘。零價鐵濾床在反應48小時內,對五氯酚之降解效果逐漸下降,但是仍能繼續提供亞鐵離子以利第二階段過氧化氫添加實驗的進行。零價鐵濾床結合過氧化氫對五氯酚降解之結果可以二階反應來模擬;總有機碳的去除在反應時間100分鐘內,以二階反應進行模擬時有不錯之線性關係。五氯酚經由零價鐵濾床及過氧化氫作用後能夠有效脫除氯離子,而且其脫除的氯離子能以五氯酚去除率及礦化率計算獲得一合理範圍,結果中顯示大部分實驗氯離子皆能符合理論範圍之內。
In this study, zero-valent iron (ZVI)/quartz sand (QS) filter bed combined with hydrogen peroxide were used for the removal of pentachlorophenol (PCP) in groundwater. There were two processes in reactions. First, ZVI was chosen as main element to initiate PCP dechlorination through reductive reaction pathway. Second, ZVI converted to ferrous iron (Fe2+) after first reactions. At this time, hydrogen peroxide was added to system and it could react with Fe2+ , called Fenton processes. Fenton reaction could degrade PCP by oxidation. The liquid-liquid extraction method by hexane was used to extract for pentachlorophenol in liquid phase , than analysised by GC. The recovery was 96.5%. Base on the result of background experiment, ZVI filter bed could effectively degrade PCP in groundwater for 58%. The concentration of hydrogen peroxide was 25, 50 and 100 mg/L. When 50 and 100 mg/L hydrogen peroxide were added to influence site, it has better removal efficiency and mineralization ratio than 25 mg/L; addition of 100mg/L hydrogen peroxide to effluence site has the best removal efficiency and mineralization ratio. Base on the results of different hydrogen peroxide addition sites, the effluence site has better removal efficiency and mineralization ratio than the influence site. According to the result of hydrogen peroxide addition experiment, the best retention time of PCP in effluence container was 100 minutes. The results of persistent experiment of ZVI indicate that after 48 hours in use, the degradation efficiency of zero-valent iron filter bed will decrease, but it could still provide Fe2+ ion for Fenton process.
URI: http://hdl.handle.net/11455/5274
其他識別: U0005-1307200711371400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307200711371400
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.