Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5275
標題: 利用電動力法處理MSWI飛灰重金屬之研究
The Study of Heavy Metal in MSWI Fly Ash Treated by Electrokinetic Process
作者: 周政賢
Chou, Cheng-Hsien
關鍵字: Electrokinetic process
電動力
Fly ash
Heavy metals
Sequential extraction
焚化飛灰
重金屬
逐步萃取
出版社: 環境工程學系所
引用: 一、中文部分 1.顧順榮、鐘昀泰、張木彬,「台灣地區都市垃圾林化灰份中重金屬濃度及TCLP 溶出評估」,第十屆廢棄物處理技術研討會論文集,第271-279頁,1995。 2.吳家誠,「重金屬之化學物種分類與分析技術」,化學,第49期,第316-322 頁,1991。 3.詹炯淵,「垃圾焚化飛灰管理對策之研究,國立台灣大學環境工程學研究所 碩士論文,台北,2001。 4.楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,第43-49頁,1996。 5.王鯤生、江康鈺、張木彬、孫長榮、劉宗諭,「焚化灰渣熔融處理特性及資源 化之研究」,第十二屆廢棄物處理技術研討會論文集,台北,第249頁,民國86年12月。 6.李釗、于諄德、陳迪華、曾迪華,「垃圾焚化飛灰固化前之前處理分法研究」, 第十二屆廢棄物處理技術研討會論文集,台北,第231頁,民國八十六年十月。 7.林家禾,「垃圾焚化飛灰中無機氯鹽對重金屬溶出之影響」,碩士論文,私 立淡江大學水資源及環境工程研究所,淡水,1995。 8.黃國全,「靜電集塵器對空氣污染之防治」,台灣環保產業雙月刊,第 15期,2002。 9.李建中、李釗、何啟華、鄭清江,「垃圾焚化灰燼之力學特性與在大地工程 之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,第193頁, 1996。 10.王鯤生、張木彬,「高溫熔融處理事業廢棄物焚化灰燼之減量、經濟性及資 源再利用之研究」,期末報告,榮民工程事業管理處,1997。 11.冯军会、何品晶、曹群科、章 骅、张沛君,「垃圾焚烧飞灰中重金属浸出的 影响因素」,ENVIRONMENTAL CHEMISTRY, 第24卷,第4期,2005。 12.高思懷,「焚化廠灰渣處理及資源化技術」,行政院環境保護署環境保護人 員訓練所垃圾焚化廠操作營運管理訓練班,第1-31頁。 13.翁誌煌,「受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染 廠址之研究(第二年)」,行政院國科會專題研究計畫成果報告,1998。 14.斯克誠、駱尚廉,「土壤與地下水污染整治政策與其實務」,土木水利,第26 卷,第4期,第50-58頁,2000。 15.楊金鐘、林舜隆,「利用電動力法處理人工合成之鉛污染土壤」,第11屆廢 棄物處理技術研討會論文集,臺北,第518-527頁, 1996。 16.初建、王敏昭,「重金屬於其污染土壤之固相型態」,中國農業化學會誌, 第37卷,第1期,臺北,第32-41頁, 1999。 17.陳雍程,「土壤樣品鉛、鎘的逐步萃取」,碩士論文,國立中興大學環境工 程學系,台中,2000 。 18.蘇惠靖,「以萃取法復育受重金屬污染土壤之可行性評估」,碩士論文,國 立屏東科技大學環境工程與科學系,屏東,2003。 19.林世平,「改變電壓操作方式對電動力處理受污染底泥之影響」,碩士論文, 國立中興大學環境工程學系,台中,2004。 20.張俊鴻,「以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究」,碩士在職 專班論文,國立中央大學環境工程研究所,中壢,2006。 21.孫常榮,「都市垃圾焚化飛灰水溶性與矽質成分在燒結熱處理過程對重金屬 行為之影」,博士論文,國立中央大學環境工程研究所,中壢,2000。 22.廖文彬、楊仁泊、周政賢,「垃圾焚化飛灰重金屬總量分析之探討」,環境 分析化學研討會, 中興大學,2006。 23.楊仁泊,「國內垃圾焚化飛灰水萃之基本特性」,中華民國環境工程學會廢 棄物處理技術研討會,2006。 24.行政院環境保護署;垃圾資源回收廠焚化廠興建工程,2006 25.行政院環境保護署;事業廢棄物管制資訊網,2005。 26.行政院環境保護署;統計室年報表,2006 27.經濟部工業局,「廢棄物資源化技術」,民國88年6月 二、西文部分 28.Carlton, C. Wiles., “Municipal solid waste combustion ash:State-of- the-Knowledge”, Journal of Hazardous Materials, Vol. 47, PP. 325-344, 1996. 29.Narukawa, T., Kenneth, W. R., David, H. F. and Koichi, C ., “Speciation of chromium in Australian fly ash”, Talanta, 2007. 30.Mangialardi, T., “Sintering of MSW fly ash for reuse as a concrete aggregate“ , Journal of Hazardous Materials, Vol. 87, pp. 225–239, 2001. 31.Ferreira, C., Ribeiro, A. and Ottosen, L., “Possible applications for municipal solid waste fly ash”, Journal of Hazardous Materials, Vol. 96, pp. 201–216, 2003. 32.Tchobanoglous, G., Theisen, M. and Vigil, S., Integrated Solid Waste Manage. Engineering Principles and Management Issues. McGraw-Hill, 1993. 33.Paasivirta, J., Chemical Ecotoxicology. Lewis Publishers, 1991. 34.Young, J. P. and Jong, H., “Vitrification of fly ash from municipal solid waste incinerator”, Journal of Hazardous Materials, Vol. 91, pp. 83-93, 2002. 35.Haugsten, K. E. and Gustavson, B., “ Environmental properties of vitrified fly ash from hazardous and municipal waste incineration”, Waste Management, Vol. 20, pp. 167–176, 2000. 36.Takayuki, S. and Masataka, H., “BEHAVIOR OF STABILIZED FLY ASHES IN SOLID WASTE LANDFILLS”, Waste Management, Vol. 16, pp. 545-554, 1996. 37.Yvon, J., Antenucci, D., Jdid, E. A., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P. and Veschkens, M., “Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders“, Journal of Geochemical Exploration, Vol. 90, pp. 143–155, 2006. 38.Wang, S. Y. and Vipulanandan, C., “Leachability of lead from solidified cement- fly ash binders”, Cement and Concrete Research, Vol. 26, pp. 895-905, 1996. 39.Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A. and S. Francesconi., “Innovative stabilization/solidfication processes of fly ash from an incinerator plant of urban solid waste”, Microchemical Journal, Vol. 79, pp. 29-35, 2005. 40.Querol, X., Fernandez-Turiel. J, L. and Lopez-Soler, A., “Trace Element in Coal and Their Behavior During Combustion in a Large Power Station”, Fuel, Vol. 74 pp. 331-343, 1995. 41.Hamernik, J. D. and Frantz, G. C., “Physical and Chemical Properties of Municipal Solid Waste Fly Ash”, ACI Materials Journal, Vol. 88, pp. 294, 1991. 42.Huang, W. J. and Chu, S. C.,“A study on the cementlike properties of municipal waste incineration ashes”, Cement and Concrete Research, Vol. 33, pp. 1795– 1799, 2003. 43.U.S. EPA, Office of Solid Waste and Emergency Response,Technology InnovationOffice, Washington, DC, 2002. 44.Acar, Y. B. and Alshawabkeh, A. N., “Principles of Electrokinetic Remediation”, Environmental Science & Technology, Vol. 27, NO.13, pp. 2638-2647, 1993. 45.Lin, D. F., Lin, J. D. and Chenc, S. H.,“The application of baghouse fines in Taiwan Resources”, Conservation and Recycling, Vol. 46, pp. 281–301, 2006. 46.IAWG (The International Ash Working Group)., “Municipal Solid Waste Incinerator Residues”, Elsevie, 1997. 47.Kida, A., Noma, Y. and Imada, T., “Chemical Speciation and Leaching Pro-perties of Elements in Municipal Incinerator Ashes”, Waste Management, Vol. 16, pp. 527-536, 1996. 48.Wadge, A., Hutton, M. and Peterson, P. J., “The Concentrations and Particle Size Relationships of Selected Trace Elements in Fly ashes from U.K. Coal-Fired Power Plants and Refuse Incinerator”, Science Total. Environment, Vol. 54, pp. 13-57, 1986. 49.Mulder, E., “Pre-treatment of MSWI Fly Ash For Useful Application”, Waste Management, Vol. 16, pp. 181, 1996. 50.Mangialardi, T., Paolini, A. E., Polettini, A. and Sirini, P., “ Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol. 70, pp. 53-70, 1999. 51.Park, Y. J. and Heo, J., “Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling”, Ceramics International, Vol. 28, pp. 689-694, 2002. 52.Arvelakis, S. and Frandsen, F. J., “Study on analysis and characterization methods for ash material from incineration plants”, Fuel, Vol. 84, pp. 1725-1738, 2005. 53.Andiç, Ö., Ramyar, K. and Korkut, Ö., “Effect of fly ash addition on the mechanical properties of tile adhesive”, Construction and Building Materials, Vol. 19, pp. 564-569, 2005. 54.Forteza, R., Far, M., Seguı́, C. and Cerdá, V., “Characterization of bottom ash in municipal solid waste incinerators for its use in road base”, Waste Management, Vol. 24, pp. 899-909, 2004. 55.Karamanov, A., Pelino, M. and HreglichSintered, A., “glass-ceramics from Municipal Solid Waste-incinerator fly ashes—part I: the influence of the heating rate on the sinter-crystallisation”, Journal of the European Ceramic Society, Vol. 23, pp. 827-832, 2003. 56.Casa, G. D., Mangialardi, T., Paolini, A.E. and Piga, L., “Physical-mechanical and environmental properties of sintered municipal incinerator fly ash”, Waste Management, Vol. 27, pp. 238-247, 2007. 57.Singh, I. B., Chaturvedi, K., Morchhale, R. K. and Yegneswaran, A. H., “Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay”, Journal of Hazardous Materials, Vol. 141, pp. 215–222, 2007. 58.Haiying, Z., Youcai, Z. and Jingyu, Q., “Study on use of MSWI fly ash in ceramic tile”, Journal of Hazardous Materials, Vol. 141, pp. 106–114, 2007. 59.Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C. Lee, M. Y. and Wang, C. F., “Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash ” , Journal of Hazardous Materials, pp. 1-33, 2007. 60.Lee, P. H., Delay, I. and Nasserzadeh, V., “Characterization Deconta-munation and Health Effects of Fly Ash from Waste Incinerators”, Environmental Progress, Vol. 17, pp. 261-269, 1998. 61.Birnbaum, L. and Richer, U., “Detailed Investigations of Filter Ashes From Municipal Solid Waste Incineration”, Waste Management & Research, Vol. 16, pp. 190-194, 1998. 62.Zhang, F. S. and Itoh, H., “Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process”, Journal of Hazardous Materials, Vol. 136, pp. 663–670, 2006. 63.Australia, S. L., “Electrokinetic Remediation”, Particulate Science and Technology , Vol. 19, pp. 219-228, 2001. 64.Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bicka, M. and Parker, R., “Electrokinetic Remediation: Basics and Technology Status”, Journal of Hazardous Materials, Vol. 40, pp. 117-137, 1995. 65.Sawyer, C. N., McCarty, P. L. and Parkin, G. F., Chemistry for Environmental Engineering, 4th edition, McGraw-Hill, pp. 332-334, 1994. 66.Acar, Y. B. and Alshawabkeh, A. N., “Principles of Electrokinetic Remediation”, Environmental Science & Technology, Vol. 27, pp. 2638-2647, 1993. 67.Acar, Y. B., Alshawabkeh, A. N. and Gale, R. J., “Fundamentals Aspects of Extracting Species from Soils by Electrokinetics”, Waste Management, Vol. 12, pp. 1410-1421, 1993. 68.Kim, S. O., Moon, S. H., Kim, K. W. and Yun, S. T., “Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges”, Water Research, Vol. 36, pp. 4765-4774, 2002. 69.Virkutyte, J., Sillanpää, M. and Latostenmaa, P., “Electrokinetic soil remediation — critical overview”, The Science of the Total Environment, Vol. 289, pp. 97-121, 2002. 70.Hamed, J. T. and Bhadra, A., “Influence of Current Density and pH on Electrokinetics” , Journal of Hazardous Materials, Vol. 55, pp. 279-294, 1997. 71.Zhou, D. M., Deng, C. F. and Cang, L., “Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents”, Chemosphere, Vol. 56, pp. 265-273, 2004. 72.Röhrs, J., Ludwig, G. and Rahner, D., “Electrochemically Induced Reactions in Soils—A New Approach to the In-Situ Remediation of Contaminated Soils: Part 2: Remediation Experiments with a Natural Soil Containing Highly Chlorinated Hydrocarbons”, Electrochimica Acta, Vol. 47, pp. 1405-1414, 2002. 73.Baraud, F., Tellier, S. and Astruc, M., “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH”, Journal of Hazardous Materials, Vol. 64, pp. 263-281, 1999. 74.Krishna, R. R., Parupudi, U. S., Devulapalli, S. N. and Xu, Y. C., “Effects of Soil Composition on the Removal of Chromium by Electrokinetics”, Journal of Hazardous Materials, Vol. 55, pp. 135-158, 1997. 75.Vane, M. L. and Zang, G. M., “Effects of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-osmotic Permeability:Implications for Electro-Kinetic Soil Remediation Processes”, Journal of Hazardous Materials, Vol. 55, pp. 1-22, 1997. 76.Nyer, E. K., Fam, S., Kidd, D. F., Palmcr, P. L., Bocttcheer, G. T., Crossman, L. and Suthersan, S. S., “In-Situ Treatment”, CRC Press, pp. 310-314, 1996. 77.Traina, G. a., Morselli, L. and Adorno, G. P., “Electrokinetic remediation of bottom ash from municipal solid waste incinerator ”, Electrochimica Acta, Vol. 52, pp. 3380-3385, 2007. 78.Tessier, A., Campbell, P. G. C. and Bisson, M., “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals”, Analytical Chemistry, Vol. 51, pp. 544-851, 1979. 79.Salim, I. A., Miller, C. J. and Howard, J. L., “Sorption isotherm-sequential extraction analysis of heavy metal retention in landfill liners”, Soil Sci. Soc. Am. J, Vol. 60, pp. 107-114, 1996. 80.Balasoiu, C. F., Zagury, G. J. and Deschênes, L., “Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition”, The Science of The Total Environment, Vol. 280, pp. 239-255, 2001. 81.Gemma, R., “Extraction procedure for the determination of heavy metal in contaminated soil and sediment”, Talanta, Vol. 46, pp. 449-455, 1997. 82.Lietz, W. and Galling, G., “Metals from sediments”, Water Research, Vol. 23, pp. 247-252, 1989. 83.Elliott, H. A., Liberti, M. R. and Huang, C. P., “Competitive Adsorption of heavy metals by soil”, Journal of Environmental Quality, Vol. 15, pp. 214-219, 1986. 84.Gerhardt, A., “Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions”, Water Air and soil pollution, Vol. 17, pp. 23-55, 1993. 85.Weng, C. H., Lin, Y. H. and Hsieh, Y. H., “Electrokinetic remediation of trichloroethylene contaminated kaolinite”, Journal of the Chinese Institute of environment engineering, Vol. 10, pp. 279-289, 2000. 86.Cauwenberghe, L. V., “Electrokinetics”, Ground-Water Remediation Technologies Analysis Center, 1997. 87.Acer, Y. B., Lee, H. and Gale, R. J., “Phenol removal from kaolinite by electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, pp. 1837-1852, 1992. 88.Kim, S. O., Moon, S. H., Kim, K. W. and Yun, S. T., “Pilot scale on the ex site electrokinetic removal of heavy metal from municipal wastewater sludge”, Water Research, Vol. 36, pp. 4765-4774, 2002.
摘要: 台灣地區經由焚化處理所產生之飛灰數量龐大,且經毒性特性溶出試驗(TCLP)判定為有害事業廢棄物,故無法直接掩埋或再利用;目前國內MSWI飛灰之處理多採固化穩定法,但固化體長期穩定性堪慮,有二次污染之虞。電動力復育技術是一種經濟且有效之整治方法,因此,本研究主要探討以直接電動力及水萃結合電動力法處理焚化飛灰中重金屬成效之差異。應用此技術來處理焚化飛灰中之鉛、鎘、鉻、銅等重金屬,期望能得到最佳處理效率。 電動力實驗中,飛灰A及B均先經過前處理,電壓控制在20V,電流則隨飛灰中之電解質而作改變,以超純水當作電解液,每組操作時間一星期。由實驗結果顯示,飛灰A 直接電動力/水萃結合電動力鉛、鎘、鉻、銅之去除率分別為13.10、6.52、14.25、6.47 % /11.17、10.10、6.79、15.08%;飛灰B直接電動力/水萃結合電動力鉛、鎘、鉻、銅之去除率分別為13.03、9.21、24.15、4.35 % /17.20、15.89、14.64、30.22% 。 經電動力處理後TCLP實驗結果顯示,飛灰A直接電動力/水萃結合電動力鉛、鎘、鉻、銅均符合法規標準值;飛灰B水萃結合電動力亦都符合法規值。在直接電動力部份,鉛的平均濃度16.2mg/L為標準值5mg/L之3倍。由實驗結果指出,飛灰若以水萃結合電動力方式處理時,其TCLP均能通過法規之標準值。 由電動力實驗結果顯示,可發現電動力對目標重金屬之去除率有一定之限制,因飛灰中含有鹼性物質,故pH緩衝能力較大,而降低重金屬之去除效果。由逐步萃取實驗顯示,飛灰A中之鉛以有機/硫化態及殘渣態累積,鎘以碳酸鹽態累積為主,鉻主要以殘渣態累積為主,銅以鐵錳氧化態及有機/硫化態累積為主;飛灰B中之鉛以碳酸鹽態累積為主,鎘主要以碳酸鹽態累積為主,鉻以殘渣態累積為主,銅以鐵錳氧化態累積為主,由其中可發現主要以碳酸鹽態累積為主,故可能造成處理效率偏低。
The incineration process of municipal solid waste will accompany a large amount of fly ash, and it is determined by the TCLP (Toxicity Characteristic Leaching Procedure) as hazardous waste. Therefore, the fly ash can't be landfilled or reused directly. Solidification process is often used to apply in the fly ash treatment, but the process is still unstable. However, electrokinetic process is an economical and effective remediation method. This study was aimed at discussing heavy metals of fly ash that were treated only by electrokinetic process or water washing combined with electrokinetic process. Using this technology to deal with heavy metals of fly ash such as lead, cadmium, chromium, copper, and excepted to get the best treatment efficiency. The ashes used in this experiment are fly ash A and B. The operation conditions are the control voltage at 20V, deionized water as electrolyte and graphite as electrodes. The results showed that, fly ash A directly treated by electrokinetic process and water washing combines electrokinetic process, the removal rate of the lead, cadmium, chromium, copper was 13.10, 6.52, 14.25, 6.47% and 11.17, 10.10, 6.79, 15.08%, respectively; fly ash B was 13.03, 9.21, 24.15, 4.35 % and 17.20, 15.89, 14.64, 30.22%, respectively. The result of TCLP experiment showed that whatever fly ash A directly treated by electrokinetic process only or water washing followed by electrokinetic process, the ash meets the regulation levels for lead, cadmium, chromium, copper. Fly ash B treated by water washing them by electrokinetic process also meets the regulation values, but if treated by electrokinetic process only, the concentration average of lead was 16.2 mg/L which was 3 times of the standard value 5mg/L. The results of this experimental indicate that if fly ash treated by both water washing and electrokinetic process, the TCLP results will be meet with regulation requirements. The study indicated that electrokinetic process was limited to remove the heavy metals from fly ash. Because fly ash contained many base materials and pH buffer capacity was relative high, thus decreased the removal rate of heavy metals. By sequential extraction procedure, the results showed that fly ash A lead was accumulated in the phases of organic/sulfur and residue; fly ash B lead was mainly accumulated in carbonate phase. It could be found that it the heavy metals was accumulated in carbonate phase, this might caused a low removal efficiency.
URI: http://hdl.handle.net/11455/5275
其他識別: U0005-1307200711444600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307200711444600
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.