請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5300
標題: 以流體化床過濾粒狀物及有機物之研究
The study of the filtration of particle and VOC by a gas-solid fluidized bed
作者: 陳駿樑
Chen, Jing-Liang
關鍵字: 流體化床
fluidized bed
粒狀物
有機物
particle
VOC
出版社: 環境工程學系所
引用: 中文部份 經濟部工業局,“空氣污染物控制設備之評估與選用技術手冊”,1995。 經濟部工業局,“有機溶劑污染控制”,1995。 經濟部工業局,“塗裝業揮發性有機物廢氣減量評估指引”,2003。 白曛綾、盧重興、張國財、曾映棠、黃欣惠,“操作績效自我評估管理制度手冊-活性碳吸附塔”,2003。 錢建嵩,“流體化床技術”,高立圖書有限公司,1992。 章裕民,“焚化處理技術”,文京圖書有限公司,1996。 王俞敏,“高效率文氏洗滌器之測試研究”,碩士論文,國立交通大學環境工程研究所,新竹,2001。 陳科豪,“以流體化床濾除煙道氣中粒狀物之研究”,碩士論文,國立中興大學環境工程研究所,台中,2002。 劉光宇“氣固式流體化床過濾粒狀污染物的動態變化與影響參數之研究”,博士論文,國立中興大學環境研究所,台中,2006。 葉家伶,“以三向觸媒同時處理焚化廢棄中有機污染物、CO 及NOx 之研究”,碩士論文,國立中興大學環境工程研究所,台中,2001。 蔣博欽“以流體化床控制焚化廢氣中污染物之研究”,博士論文,國立中興大學環境研究所,台中,2001。 蘇維彬,“活性碳吸附對汽車表面塗裝噴塗房含漆霧排氣之處理效能評估”,碩士論文,元智大學機械工程研究所,桃園,2003。 周孫有,“固定式活性碳吸附床對煙道氣中有機物及重金屬吸附之研究”碩士論文,國立中興大學環境研究所,台中,1998。 徐玉杜,“製程超細微粒控制技術”,奈米技術於環保領域之應用及相關議題技術論壇,奈米技術於環保領域應用計畫座談會(I),2004。 鄭尊仁,“奈米微粒心肺毒性研究”,奈米技術於環保領域之應用及相關議題技術論壇,奈米技術於環保領域應用計畫座談會(I),2004。 高雄市環保局,高雄市空氣污染防治基金第四屆管理委員會節三次會議,2004,。 行政院環保署全球資訊網 高雄市環保局全球資訊網 行政院勞工安全衛生研究所全球資訊網 西文部份 Al-Zahrani,A.A. and Daous, M. A.,“Bed expansion and average bubble rise velocity in a gas-solid fluidized bed”,Powder Technol., Vol.87,pp.255-257,1996. Baeyens,J.,Geldart,D.and Wu,S.Y.,“Elutriation of fines from gas fluidized beds of Geldart A-type powders-effect of adding superfines”,Powder Technol.,Vol.71,pp.71-80,1992. Briens,C.L.,Bergougnou,M.A.,Inculet,I.I.,Baron,T.,and Hazlett, J.D.,“Size distribution of particles entrained from fluidized- beds–electrostatic effects”,Powder Technol.,Vol.70,pp.56-72 ,1992. Chiang,B.C.,Wey,M.Y.,Yang,W.Y.and Lu, C.Y.,“Simultaneous control of metals and organics using fluidized bed adsorber”,Environ. Technol.,Vol.24,pp.1103-1115,2003(b). Chiang,B.C.,Wey,M.Y. and Yeh,C.L.,“Control of acid gases using a fluidized bed adsorber”,J.Hazard.Mater.,Vol.101(B), pp.259-272, 2003. Chitester,D.C.,Kornosky,R.M.,Fan,L.S.and Danko,J.P., “Characteristics of fluidization at high pressure”,Chem.Eng. Sci.,Vol.39,pp.253-261,1983. Choi,J.H.,Choi,K.B.,Kim,P.,Shun,D.W.,and Kim,S.D.,“The effect of temperature on particle entrainment rate in a gas fluidized bed”, Powder Technol.,Vol.92,pp.127-133,1997. Chou,C.S.,Tseng,C.Y.,Smid,J.,Kuo,J.T. and Hsiau,S.S.,“Numerical Simulation of Flow Patterns of Disks in the Asymmetric Louvered-Wall Moving Granular Filter Bed’,Powder Technol.,Vol.110,pp.239-245, 2000. Clift,R.and Grace,J.R.,“Fluidization”,Academic Press,London, 1985. Cook,J.L.,Khang,S.J.,Lee,S.K.and Keener,T.C.,“Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber”,Powder Technol.,Vol.89,pp. 1-8,1996. Cooper,C.D.and Alley,F.C.,“Air Pollution Control”,Central Book Publishing Company,1996. Darton,R.C.,La Nauze,R.D.,Davidson,J.F.and Harrison,D., “Bubble growth due to coalescence in fluidized beds”,Trans.Instn. Chem.Eng.,Vol.55,pp.274-280,1977. Davies,C.N.,“Air Filtration”,Academic Press, London, 1973. Geldart,D.,“The effect of particle size and size distribution on the behaviour of gas-fluidised beds”,Powder Technol.Vol.6,pp. 201-215,1972. Geldart,D.,“The effect of particles size and size distribution on the behaviour of gas-fluidiesed beds”,Powder Technol.,Vol.59, pp.279-284 1981. Geldart,D.,“Gas Fluidization Technology”,John Wiley and Sons,1986. Geldart,D.,Harnby,N.and Wong,A.C.,“Fluidization of cohesive powders”,Powder Technol.,Vol.37,pp.25,1987. Ghadiri,M.,Seville,J.P.K.and Clift, R.,“Fluidised bed filtration of gases at high temperatures”,Trans IChemE., Vol.71(A),pp. 371-381, 1993. Hinds,W.C.,“Aerosol Technology”,John Wiely & Sons.Inc., New York,1999. Hinds,W.C.,“Aerosol Technology”,John Wiely & Sons,New York,1999. Jonas L.A.,Rehrmann J.A,“The Kinetics of adsorption of organo phosphorus vapors from air mixtures by activated carbons”,Carbon,pp.657~663(1972). Jonas L.A.,Rehrmann J.A.,“The rate of gas adsorption by activated carbons”,Carbon ,Vol.12,pp.95-101,1974. Kirsh,A.A.and Stechkina,I.B.,“The Theory of Aerosol Filtration with Fibrous Filters”,in Fundamentals of Aerosol Science,D.T. Shaw(Ed.),Wiley,New York,1978. Li,X.,Yan,J.,Ni,M.,Cen,K.,“Study on mixing performance of municipal solid waste(MSW) in differential density fluidized beds(FBs)”,Chemical Eng.,Vol.84,pp.161-166,2001. Llop,M.F.,Casal,J.and Arnaldos,J.,“Expansion of gas-solid fluidized beds at pressure and high temperature”,Powder Technol.,Vol.107,pp.212-225,2000. Llop,M.F.,Casal,J.and Arnaldos,J.,“Expansion of gas-solid fluidized beds at pressure and high temperature”,Powder Technol., Vol.107,pp.212-225,2000. Rowe,P.N.,Foscolo,P.U.,Hoffmann,A.C. and Yates,I.G., “Engineering Foundation”in“Fluidization”,Vol.Ⅳ,Kunii,D.and Toei,R.( eds.),New York,1984. Rodriguez,J.M.,Sánchez,J.R.,Alvaro,A.,Florea,D.F.and Estévez, A.M.,“Fluidization and elutriation of Iron oxide particles. A study of attrition and agglomeration processes in fluidized beds”, Powder Technol.,Vol.111,pp.218-230,2000. Rowe,P.N.,“Prediction of bubble size in a gas fluidised bed”,Chem. Eng.Sci.,Vol.31,pp.285-288, 1976. Ruthven,D.M.and B.K.Kaul ,“Adsorption of Aromatic Hydrocarbons in Nax Zeolite.1.Equilibrium”Ind.Eng.Chen.Rse.2047~2052(1993). Wen,C.Y.and Yu,Y.H.,“Mechanics of Fluidization”, Chem.Eng.Progr. Symp.Ser.,Vol.62,No.62,pp.100-111,1966. Tanimoto,H.,Chiba,T.,Kobayashi,H.,“Effects of segregation on fine elutriation from gas-fluidised beds of binary solid mixture,J. Chemical Engineering of Japan”,Vol.16,No.2,pp.149-152,1983. Wheele A.,Robell A.J.,“Performance of fixed-bed catalytic reactors with poison in the bed”,Journal of catalysis,Vol.13,pp.299-306. Wood.G.O.,“Quantification and application of skew of breakthrough curves for gases and vapor eluting from activated carbon beds” ,Carbon,Vol.40,pp.1883-1890,2002. Yates,J.G.and Newton,D.,“Fine particle effects in a fluidized-bed reactor”,Chem.Eng.Sci.,Vol.41,pp.801-806,1986. Yeh,H.C.and Liu,B.Y.H.,“Aerosol filtration by fibrous Filters”, J.Aerosol Sci.,Vol.5,pp.191-217,1974.
摘要: 流體化床因為具有床溫均勻、高接觸面積及高質傳效率等特性,亦能同時去除多種污染物等優點,所以適合應用於各種形態的污染控制,因此本研究將以流體化床過濾煙道氣中粒狀物、甲苯氣體以及同時存在粒狀物及甲苯氣體的廢氣,並對於其去除效果及過濾行為,進行初步影響因素之探討。 研究結果顯示,吸附較低濃度的100 ppm及250 ppm甲苯氣體,去除效率可維持在95%以上,由於濃度的提高加速活性碳吸附飽和,因此500 ppm去除效率由99%遞減到21%。在粒狀物過濾方面,4 μm SiO2去除效率介於98.6-99.4%,並隨時間呈現動態遞減;而4 μm Al2O3去除效率由初期的97.9%隨時間遞減到95.7%,隨後遞增到96.9%;此外飛灰成份中SiO2及Al2O3所佔的比例分別有42.9%及22.2%,因此去除效率介於二者之間,並隨時間呈現動態遞減。另外在Al2O3顆粒的去除效果方面,80 nm去除率介於94.8%-99.8%,高於20 nm的91.7%-99.6% ,由於大粒徑顆粒雖可藉由慣性撞擊等機制,與床質顆粒有較佳的接觸機會,但可能因為撞擊時的反彈效應降低去除效果,因此4 μm顆粒的去除效果低於80 nm顆粒,但高於20 nm顆粒;然而若是顆粒間有較強的凝聚作用力,可超越反彈效應時,反而會有較高的去除效果, 因此當煙道氣中同時存在甲苯氣體時,去除效率以4μm Al2O3最高,其次才為80 nm及20 nm Al2O3。此外Al2O3可能因顆粒性質的關係,所以去除效率皆隨時間呈現先遞減而後來增加的相同趨勢。 在SiO2顆粒去除效果方面,由於80nm及10nm顆粒性質的關係,與上述各種粒狀物的入口濃度差異甚大,因此在本研究中SiO2顆粒去 除效果方面,僅針對粒徑80nm及10nm進行比較,80 nm及10 nm SiO2 去除效率分別介於87.3%-95.1%及84.5%-93.1%,由於密度較輕或尺寸 較小的顆粒,若顆粒與顆粒間的吸引力及擴散作用力較弱時,顆粒不易互相凝聚成大顆粒或附著於床質顆粒,而隨著氣流離開流體化床,造成去除效率快速下降;反之則會呈現較大的顆粒收集量及較高的去除效果,因此當煙道氣中同時存在甲苯氣體時,使得80nm及10nm SiO2顆粒呈現較高之去除效率。 當粒狀物的煙道氣中同時存在甲苯氣體時,粒狀物的去除效果方面,除了20 nm及80 nm Al2O3呈現下降的趨勢外,其餘顆粒都是呈現上升的趨勢,另一方面分析甲苯氣體的去除效率,於所有同時存在粒狀物及甲苯氣體的試程實驗中,經流體化床過濾後的出口處皆偵測不到甲苯氣體。綜合上述得知,流體化床不但能有效去除甲苯氣體,對於微米顆粒也呈現極高的去除效果,在奈米顆粒過濾方面也具有相當的潛力及不錯的去除效率。
Fluidized beds are widely used in the air pollution control because of its uniform temperature, high contact area and mass transfer, and the advantages of removing different pollutants simultaneously. The fluidized bed is used to filter the particles and adsorb the volatile organic compound in this study. First of all, the removal efficiencies of the particles and toluene are discussed indiviaually. Then, the removal of the particles and toluene are studied when they both exist in the exhaust gas. The results show that the adsorption efficiency of toluene of 100 and 250 ppm are higher than 95%. However, the removal efficiency of toluene of 500 ppm decreased from 99% to 21 % with time. The removal efficiency of 4 μm SiO2 decreased from 99.4 to 98.6% with time, while the removal efficiency of 4 μm Al2O3 decreased from 97.9% initially to 95.7% with time, rising to 96.9% finally. The removal efficiency of the fly ash of the slid waste incinerator varied between those of the 4 μm SiO2 and Al2O3 partisles. Generally, the main components of the fly ash were SiO2 and Al2O3 which were 42.9 % and 22.2 % respectively. Therefore, the removal efficiency of the fly ash was lower than that of SiO2 particles but was higher than Al2O3 particles. The removal efficiency of 80 nm and 20 nm Al2O3 particles were between 94.8% to 99.8% and 91.7% to 99.6% respectively. The remove efficiencies of 4 μm Al2O3 were lower than 80 nm particles, but higher than 20 nm particles. The strong inertial impaction of the large particles improved the contact of the large particles between bed materials. However, the rebounce effect of the strong impaction also decreased the removal efficiency of the large particles. Moreover, high removal efficiecvy was observed for large particles if the adhesion force between the particles and bed materials overcame the rebounce effect. Therefore, the removal efficiency of Al2O3 was in the order of 4 μm > 80 nm > 20 nm when the Al2O3 particles and toluene existed simultaneously in the exhaust gas, revealing that the adsorption of toluene on the bed materials increased the adhesion of the particles onto the bed materials. As for the 80 nm and 10 nm SiO2 particles, the properties of 80 nm and 10 nm SiO2 particles differed from the above-mentioned particles, causing the large variations of the input concentrations between the different particles. Therefore, the removal efficiencies of 80 nm and 10 nm SiO2 particles were discussed separately. The removal efficiencies of 80 nm and10 nm SiO2 particles ranged from 87.3 % to 95.1% and 84.5 to 93.1% individually. When the attration force between particles or the diffusion effect was weak, the particles were not easy to aggregate to large particles or adhere onto the bed material. Therefore, those light or small particles escaped from the fluidized bed with the gas flow. The removal efficiency decreased. On the contrary, high removal efficiency was high if the attraction or diffusion effect was strong. That was the reason that the removal essiciencies of 80 nm and 10 nm SiO2 particles when the toluene gas existed were higher than the efficiency if toluene was not present. When the particles and toluene were present in the exhaust gas, the removal efficiencies of the particles were higher than the efficiencies when toluene did not existed except of the 20 nm and 80 nm Al2O3 particles. The concentration of toluene at the exit of the fluidized bed was non-dectable in all experiments. The adhesion of the particles on the bed materials enhanced the removal of toluene. The fluidized beds can not only remove the toluene gas, but also collected the submicron and nanoparticles effectively. The fluidized bed shows the potential in removing simultaneously the particle and the gas pollutants in the waste gas.
URI: http://hdl.handle.net/11455/5300
其他識別: U0005-1707200716275600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200716275600
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。