Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5304
標題: 以澱粉為基質之醱酵產氫系統菌群結構分析
Microbial Community Structure of Starch-feeding Fermentative Hydrogen Producing System
作者: 廖珮瑜
Liao, Pei-Yu
關鍵字: starch
澱粉醱酵產氫
PCR
DGGE
FISH
biohydrogen
分子生物技術
菌相結構分析
出版社: 環境工程學系所
引用: 參考文獻 中文文獻 圖書 葉承, 王仙宇, 張自忠, 及 黃素清 (1991) 多醣. 化學. 台北市: 藝軒出版社. 蔡文城 (1984) 應用臨床微生物診斷學. 台北市: 九州出版社. 顏子穎, 及 王海林 (1998) 精編分子生物學實驗指南. 北京市: 科學出版社. 期刊 吳耿東, 及 李宏台 (2004) 生質能源. 科學發展 383: 20-27. 吳石乙, 白景成, 林期能, 及 陳政群 (2004) 生質產氫之三相流反應器介紹. 化工 技術 12: 129-146. 鄭幸雄, 白明德, 趙禹杰, 蕭嘉榕, 及 李學霖 (2004) 潔淨的再生能源技術--生物 產氫技術. 化工技術 10: 111-133 論文集 吳石乙, 林奇賢, 黃俊榮, 許秉叡, 林棋能, 及 張嘉修 (2005) 崩潰型生物可分解 塑膠生物產氫可行性評估. 2005第三十屆廢水處理技術研討會論文集. 第113頁 徐耀豐, 林蔓津, 陳卉頻, 林屏杰, 張嘉修, 及 李國興 (2006) 以厭氧污泥進行澱 粉醱酵產氫之最適應環境因子探討. 2006第三十一屆廢水處理技術研討會論文集.第20頁 張逢源, 鐘椀亭, 及 林秋裕 (2005) 污水污泥菌種產氫活性之探討. 2005第三十屆廢水處理技術研討會論文集. 第90頁 曾姿錦, 陳文明, 及 張嘉修 (2004) 以兼性厭氧菌Klebsiella sp.進行醱酵產氫. 2004第二十九屆廢水處理技術研討會論文集. 第1~2頁 楊立豪, 林蔓津, 呂玨儀, 林屏杰, 林秋裕, 李國興, 及 張嘉修 (2006) 以攪拌式顆粒污泥床進行澱粉醱酵產氫之研究. 2006第三十一屆廢水處理技術研討會論文集. 第19頁 鄭幸雄, 白明德, 及 趙禹杰 (2003) 厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制. 2003第二十八屆廢水處理技術研討會論文集. 第1-7頁 鄭幸雄, 李學霖, 及 郭世強 (2005a) 厭氧產氫生物水解酵素特性之研究. 2005第 三十屆廢水處理技術研討會論文集. 第87頁 鄭幸雄, 李學霖, 趙禹杰, 及 黃良銘 (2005b) 利用澱粉及蛋白腖複合基質進行厭 氧生物產氫程序. 2005第三十屆廢水處理技術研討會論文集. 第14頁 論文 李安盛 (2004) 生物暗醱酵產氫. 逢甲大學化學工程學系. 碩士論文. 台中 吳季芳 (2006) 以澱粉為碳源基質進行生物產氫. 成功大學化學工程系. 碩士 論文. 台南 林明正 (2000) CSTR厭氧產氫反應槽之啟動及操作. 逢甲大學土木及水利工程學 系. 碩士論文. 台中 林祺能 (2002) 固定化細胞產氫 逢甲大學化學工程學系. 碩士論文. 台中 施翠盈 (2002) 本土性梭菌屬產氫菌株之分離與生理特性研究. 成功大學環境工程 學系. 碩士論文. 台南 許景富 (2003) Clostridium butylicum&Clostridium thermocellum分解纖維素產氫之 特性分析. 高雄第一科技大學環境與安全衛生工程系. 碩士論文. 高雄 陳欣微 (2005) 完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析. 中 興大學環境工程系. 碩士論文. 台中 黃俊霖 (2001) 以分子生物技術探討厭氧生物產氫程序之菌群結構. 中央大學環境 工程研究所. 碩士論文. 桃園 鄭如琇 (2006) 以微生物組成探討厭氧發酵產氫系統之產氫效能. 中興大學環境工 程系. 碩士論文. 台中 賴欣宏 (2002) 不同環境條件下完全混合式反應槽厭氧產氫效率及反應力學之比 較研究. 台中師範學院環境教育研究所. 碩士論文. 台中 網路資源 大紀元時報 (2005) IEA:氫用量增世紀中可減一半溫室氣體排量. http://www.epochtimes.com/b5/5/12/2/n1140171.htm 粟德金 (2006) 美國石油時代的終結. http://www.washingtonobserver.org/document.cfm?documentid=1233&charid=2 經濟部能源局 (2006) 再生能源. http://www.taipower.com.tw/left_bar/power_life/power_development_plan/Regeneration_energy.htm 英文文獻 Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., and Lukas, J. (2002) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology 172: 762-770. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic Identification and in situ Detection of Individual Microbial Cells without Cultivation. Microbiology Reviews 59: 143-169. Ampe, F., Sirvent, A., and Zakhia, N. (2001) Dynamics of the Microbial Community Responsible for Traditional Sour Cassava Starch Fermentation Studied by Denaturing Gradient Gel Electrophoresis and Quantitative rRNA Hybridization. International Journal of Food Microbiology 65: 45-54. Arik, T., Gunduz, U., Yucel, M., Turker, L., Sediroglu, V., and Eroglu, I. (1996) Photoproduction of Hydrogen by Rhodobacter sphaeroides OU001. Proceedings of the 11th World Hydrogen Energy Conference. Viroglu TN, W.C., Baselt JP, Kreysa G, (ed). Germany Frankfurt: Scon & Wetzel GmbH, pp. 2417-2426. Aristidou, A., and Penttila, M. (2000) Metabolic Engineering Applications to Renewable Resource Utilization. Current Opinion in Biotechnology 11: 187-198. BIO-RAD (2003) Protocol of Dcodetm Universal Mutation Detection System: BIO-RAD. Brock, T.D., Madigan, M.T., Martiko, J.M., and Parker, J. (1994) Biology of Microorganisms: Pretice-Hall. Cato, E.P., Moore, W.L., and Finegold, D.L. (1986) Genus Clostridium. Bergey''s Manual of Systematic Bacteriology, pp. 1141-1200. Chang, F.Y., and Lin, C.Y. (2004) Biohydrogen Production Using an up-flow Anaerobic Sludge Blanket Reactor. International Journal of Hydrogen Energy 29: 33-39. Chang, J.S., Lee, K.S., and Lin, P.J. (2002) Biohydrogen Production with Fixed-Bed Bioreactors. International Journal of Hydrogen Energy 27: 1167-1174. Chen, C.C., Lin, C.Y., and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology 57: 56-64. Chen, X., Sun, Y., Xiu, Z., Li, X., and Zhang, D. (2006) Stoichiometric Analysis of Biological Hydrogen Production by Fermentative Bacteria. International Journal of Hydrogen Energy 31: 539-549. Colin, J. (1990) Suckling. Enzyme Chemistry, p. 311. Czuppon, T.A., Knez , S.A., and Newsome, D.S. (1996) Othmer Encyclopedia of Chemical Technology. New York: Wiley. Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The Domain-Specific Probe Eub338 is Insufficient for the Detection of All Bacteria: Development and Evaluation of a More Comprehensive Probe Set. Systematic and Applied Microbiology 22: 434-444. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13-28 DeLong, E.F., Wickham, G.S., and Pace, N.R. (1989) Phylogenetic stain: Ribosomal rRNA-Based Probes for the Indentification of Single Cells. Science 243: 1360-1363. Dorigo, U., Volatier, L., and Humbert, J.F. (2005) Molecular Approaches to the Assessment of Biodiversity in Aquatic Micorbial Communities. Water Research 39: 2207-2218. Edna, M.M., and Senti, F.R. (1958) Seperaiton of Amylose from Amylopectin of Starch by an Extraction-Sedimentation Procedure. Polymer Science. 28. Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2005) Continuous Butanol Fermentation and Feed Starch Retrogradation: Butanol Fermentation Sustainability Using Clostridium beijerinckii BA101. Journal of Biotechnology 115: 179-187. Fang, H., Zhang, T., and Liu, H. (2002) Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge. Applied Microbiology and Biotechnology 58: 112-118 Fascetti, E., and Todini, O. (1995) Rhodobacter sphaeroides RV Cultivation and Hydrogen Production in a One- and Two- Stage Chemostat. Applied Microbiology and Biotechnology 44: 300-305 Ferris, M.J., and Ward, D.M. (1997) Seasonal Distributions of Dominant 16S rRNA -Defined Populations in a Hot Spring Microbial Mat Examinant by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology 63: 1375-1381. Flickinger, M. (1980) Current Biological Research in Conversion of Cellulosic Carbohydrates into Liquid Fluels: How Far Have We Come. Biotechnology and Bioengineering 22: 27-48. Franks, A.H., Harmsen, H.J., Raangs, G.C., Jansen, G.J., Schut, F., and Welling, G.W. (1998) Variations of Bacterial Populations in Human Feces Measured by Fluorescent in situ Hybridization with Group-specific 16S rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Microbiology 64: 3336-3345. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995) Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287-297. Gottschalk, G. (1986) Bacterial Metabolism New York: Springer-Verlag. Gray, C.T., and Gest, H. (1965) Biological Formation of Molecular Hydrogen. Science 148: 186-192. Hallenbeck, P.C., and Benemann, J.R. (2002) Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy 27: 1185-1193. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. International Journal of Hydrogen Energy 27: 1339-1347. Hussy, F.R. Hawkes, R. Dinsdale, and Hawkes, D.L. (2003) Continuous Fermentative Hydrogen Production from a Wheat Starch Co-product by Mixed Microflora. Biotechnology and Bioengineering 84: 619-626. Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Jones, D.T., and Woods, D.R. (1986) Acetone-Butanol Fermentation Revisited. Microbiology Reviews 50: 484-524. Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori, Y., Fukui, T., Atomi, H., and Imanaka, T. (2005) Continuous Hydrogen Production by the Hyperthermophilic Archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology 116: 271-282. Kapdan, I.K., and Kargi, F. (2006) Bio-Hydrogen Production from Waste Materials. Enzyme and Microbial Technology 38: 569-582. Kataoka, N., Miya, A., and Kiriyama, K. (1997) Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Water Science and Technology 36: 41-47. Kato, S., Shin, H., Zong, J.C., Masaharu, I., and Yasuo, I. (2004) Effective Cellulose Degradation by a Mixed-Culture System Composed of a Cellulolytic Clostridium and Aerobic Non-Cellulolytic Bacteria. FEMS Microbiology Ecology 51: 133-142. Khanal, S.K., Chen, W.H., Li, L., and Sung, S. (2004) Biological Hydrogen Production: Effects of pH and Intermediate Products. International Journal of Hydrogen Energy 29: 1123-1131. Kim, J.O., Kim, Y.H., Ryu, J.Y., Song, B.K., Kim, I.H., and Yeom, S.H. (2005) Immobilization Methods for Continuous Hydrogen Gas Production Biofilm Formation Versus Granulation. Process Biochemistry 40: 1331-1337. Kirsten, K., Pinkart, H.C., Darke, H.L., and Devereux, R. (1999) Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule Wrightii. Applied and Environmental Microbiology 65: 5117-5123. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L. (2002) Sustained Hydrogen Photoproduction by Chlamydomonas reinhardtii: Effects of Culture Parameters. Biotechnology and Bioengineering 78: 731 - 740. Kumar, A., Jain, S.R., Sharma, C.B., Joshi, A.P., and Kalia, V.C. (1995) Increased Hydrogen Production by Immobilized Microorganisms. World Journal of Microbiology and Biotechnology 11: 156-159. Kumar, N., and Das, D. (2000) Enhancement of Hydrogen Production by Enterobacter cloacae IIT-BT 08. Process Biochemistry 35: 589-593. Lay, J.J. (2000) Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechnology and Bioengineering 68: 269-278. Lay, J.J., Lee, Y.J., and Noike, T. (1999) Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid Waste. Water Research 33: 2579-2586. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2004) Anaerobic Hydrogen Production with an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering 87: 648-657. Lettinga, G., Velsen, A.F.M., Hobma, S.W., Zeeuw, W., and Klapwijk, A. (1980) Use of the Upflow Sludge Using Activated-Carbon Supported Packed-Bed Biological Wastewater Treatment. Biotechnology and Bioengineering 22: 699-734. Levin, D.B., Pitt, L., and Murray, L. (2004) Biohydrogen Production: Prospects and Limitations to Practical Application. International Journal of Hydrogen Energy 29: 173-185. Lin, C.Y., and Chang, R.C. (1999) Hydrogen Production During the Anaerobic Acidogenic Conversion of Glucose. Journal of Chemical Technology and Biotechnology74: 498-500. Lin, C.Y., and Lay, C.H. (2005) A Nutrient Formulation for Fermentative Hydrogen Production Using Anaerobic Sewage Sludge Microflora. International Journal of Hydrogen Energy 30: 285-292 Lin, C.Y., Chen, C.C., and Lin, M.C. (2000) Hydrogen in Anaerobic Acidogenesis Process Influences of Thermal Isolation and Acclimation Environment. The Chinese Institute of Environmental Engineering 10: 163-168. Lipski, A., Friedrich, U., and Altendorf, K. (2001) Application of rRNA-Targeted Oligonucleotide Probes in Biotechnology. Applied Microbiology and Biotechnology 56: 40-57. Liu, G., and Shen, J. (2004) Effects of Culture and Medium Conditions on Hydrogen Production from Starch Using Anaerobic Bacteria. Journal of Bioscience and Bioengineering 98: 251-256. Liu, W.T., Mono, T., and Nakamura, K. (1996) Glycogen Accumulating Population and Its Anaerobic Uptake in Anaerobic-Aerobic Activated Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal. Water Research 30: 75-82. Liu, X., Zhu, Y., and Yang, S.T. (2006) Butyric Acid and Hydrogen Production by Clostridium tyrobutyricum ATCC 25755 and Mutants. Enzyme and Microbial Technology 38: 521-528. Logan, B.E., Oh, S.E., Kim, I.S., and Van Ginkel, S. (2002) Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environmental Science Technology 36: 2530-2535. Long, M.N., Huang, J.L., Wu, X.B., Xu, H.J., Chen, J.Z., Long, C.N., Zhu, F.Z., and Xu, L.H. (2005) Isolation and Characterization of a High H2-Producing strain Klebsiella Oxytoca HP1 from a Hot Spring. Research in Microbiology 156: 76-81 Madigan, M.T., and Martinko, J.M. (2006) Brock:Biology of Microorganisms. USA: Prentice Hall International. Maidak, B., Cole, J., Lilburn, T., Parker, C.J., Saxman, P., Farris, R., Garrity, G., Olsen, G., Schmidt, T., and Tiedje, J. (2001) The RDP-II (Ribosomal Database Project). Nucleic Acid Research 29: 173-174. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and Applied Microbiology 15: 593-600. Meier, H., Amann, R., Ludwig, W., and Schleifer, K.H. (1999) Specific Oligonucleotide Probes for in situ Detection of a Major Group of Gram-positive Bacteria with Low DNA G+C Content. Systematic and Applied Microbiology 22: 186-196 Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000) Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiology122: 127-136. Meyer, J., and Gagnon, J. (1991) Primary Structure of Hydrogenase I from Clostridium pasteurianum. Biochemistry 30: 9697-9704. Miyake, J., and Kawamura, S. (1987) Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter sphaeroides. International Journal of Hydrogen Energy 12: 147-149 Miyake, J., Miyake, M., and Asada, Y. (1999) Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology 70: 89-101 Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Microbiology 59: 695-700. Nakashimada, Y., Rachman, M.A., Kakizono, T., and Nishio, N. (2002) Hydrogen Production of Enterobacter Aerogenes Altered by Extracellular and Intracellular Redox States. International Journal of Hydrogen Energy 27: 1399-1405 Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogenase: An Overview. Critical Reviews in Microbiology 24: 61-84. Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy, K. (2006) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology 87: 461-472. Nielsen, A.T., Liu, W.T., Filipe, C., Grady, L. Jr., Molin, S., and Stahl, D.A. (1999) Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Microbiology 65: 1251-1258. Poulsen, L.K., Ballard, G., and Stahl, D.A. (1993) Use of rRNA Fluorescence in situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Applied and Environmental Microbiology 59: 1354-1360. Ramachandran, R., and Menon, R.K. (1998) An Overview of Industrial Uses of Hydrogen. International Journal of Hydrogen Energy 23: 593. Raskin, L., Stromley, J.M., Rittmann, B.E., and Stahl, D.A. (1994) Group-Specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens. Applied and Environmental Microbiology 60: 1232-1240. Roller, C., Wagner , M., Amann , R., Ludwig , W., and Schleifer , K.H. (1994) In situ Probing of Gram-positive Bacteria with High DNA G+C Content Using 23S rRNA- Targeted Oligonucleotides. Microbiology 140: 2849-2858. Sleat, R., Mah, R., and Robinson, R. (1984) Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp.nov. Applied and Environmental Microbiology 48: 88-93. Solomon, B.O., Zeng, A.P., Biebl, H., Schlieker, H., Posten, C., and Deckwer, W.D. (1995) Comparison of the Energentic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella pneumoniae and Clostridium butyricum During Anaerobic Growth on Glycerol. Biotechnology 39: 107-117. Stackebrandt, E., and Rainey, F.A. (1997) The Clostridia : Molecular Biology and Pathogenesis. The Clostridia : Molecular Biology and Pathogenesis. Rood, J.I., McClane, B. A., Songer, J. G. and Titball, R.W. (ed): Academic Press, pp. 3-19. Stahl, D.A., and Amann, R.I. (1991) Development and Application of Nucleic Acid Probes in Bacterial Systematics. Sequencing and Hybridization Techniques in Bacterial Systematics. E. Stackebrandt, and M. Goodfellow (eds). England: John Wilry and Sons, pp. 205-248. Straus, D.C. (1986) Production of an Extracellular Toxic Complex by Various strains of Klebsiella pneumoniae. American Society for Microbiology 55: 44-48. Suzuki, Y. (1982) On Hydrogen as Fuel Gas. International Journal of Hydrogen Energy 7: 227-230. Sveshnikov, D.A., Sveshnikova, N.V., Rao, K.K., and Hall, D.O. (1997) Hydrogen Metabolism of Mutant Forms of Anabaena variabilis in Continuous Cultures and under Nutritional Stress. FEMS Microbiology Letters 147: 297-301 Swamy, M.V., and Seenayya, G. (1996) Thermostable Pullulanase and α-Amylase Activity from Clostridium thermosulfurogenes SV9--Optmization of Culture Conditions for Enzyme Production. Process Biochemistry 31: 157-162. Taguchi, F., Hasegawa, K., Saito-Taki, T., and Hara, K. (1996) Simultaneous Production of Xylanase and Hydrogen Using Xylan in Batch Culture of Clostridium sp. strain X53. Journal of Fermentation and Bioengineering 81: 178-180 Tanisho, S., and Ishiwata, Y. (1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter Aerogenes. International Journal of Hydrogen Energy 19: 807-812. Timberlake, K.C. (2002) Chemistry:An Introduction to General,Organic,and Biological Chemistry. Pearson. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001a) Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. Journal of Bioscience and Bioengineering 92: 397-400. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001b) Microbial Community in Anaerobic Hydrogen-Producing Microflora Enriched from Sludge Compost. Applied Microbiology and Biotechnology 57: 555-562. Ueno, Y., Kawai, T., Sato, S., Otsuka, S., and Morimoto, M. (1995) Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora. Journal of Fermentation and Bioengineering 79: 395-397. Ugwuanyi, J.O., Harvey, L.M., and McNeil, B. (2004) Development of Thermophilic Populations, Amylase and Cellulase Enzyme Activities During Thermophilic Aerobic Digestion of Model Agricultural Waste Slurry. Process Biochemistry 39: 1661-1669. van Dyke, M.I., and McCarthy, A.J. (2002) Molecular Biological Detection and Characterization of Clostridium Populations in Municipal Landfill Sites. Applied and Environmental Microbiology 68: 2049-2053. Vavilin, V.A., Rytow, S.V., and Lokshina, L.Y. (1995) Modelling Hydrogen Partial Pressure Change as a Result of Competition between the Butyric and Propionic Groups of Acidogenic Bacteria. Bioresource Technology 54: 171-177. Veziroglu, T.N. (1995) Twenty Years of the Hydrogen Movement 1974-1994. International Journal of Hydrogen Energy 20: 1-7 Vignais, P.M., Billoud, B., and Meyer, J. (2001) Classification and Phylogeny of Hydrogenases. FEMS Microbiology Reviews 25: 455-501. Wagner, M., Amann, R., Lemmer, H., Manz, W., and Schleifer, K.H. (1994) Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. Water Science and Technology 29: 15 - 23. Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing Fluorescent in situ Hybridization with rRNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry 14: 136 - 143. Woese, C.R. (1978) Bacterial Evolution. Microbiology Review 51: 211-271. Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S., and Chang, J.S. (2006) Fermentative Hydrogen Production and Bacterial Community Structure in High-rate Anaerobic Bioreactors Containing Silicone-Immobilized and Self-Flocculated Sludge. Biotechnology and Bioengineering 93: 934-946. Yasunori, K., Naoe, H., Aya, F., Masaharu, N., Yukiko, F., Seiji, S., and Kenji, F. (2005) Effect of Inoculum Conditioning on Hydrogen Fermentation and pH Effect on Bacterial Community Relevant to Hydrogen Production. Journal of Bioscience and Bioengineering 100: 524-530. Yokoi, H., Maki, R., Hirose, J., and Hayashi, S. (2002) Microbial Production of Hydrogen from Starch-Manufacturing Wastes. Biomass and Bioenergy 22: 389-395. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., and Takasaki, Y. (1997) H2 Production by Immobilized Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques 11: 136-143. Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., and Takasaki, Y. (2001) Microbial Hydrogen Production from Sweet Potato Starch Residue. Journal of Bioscience and Bioengineering 91: 58-63. Zhang, T., Liu, H., and Fang, H.H.P. (2003) Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management 69: 149-156. Zhu, Y., and Yang, S.T. (2004) Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157
摘要: 氫能是一種環保與經濟兼具且能永續供應之潔淨能源,也是被國際公認為未來重要替代能源之ㄧ,在眾多產氫方法中,利用有機質進行厭氧醱酵產氫是目前被評估為最具商業潛能的,其中可被用來生物產氫的有機物質包含家庭污水、食品廢棄物中的碳水化合物、蛋白質、油脂、纖維質等,然而,基於能源的供應角度,基質來源應具備廉價及充足供應之條件。以澱粉為例,澱粉於自然界中提供的產量僅次於纖維素,亦富含於食品工業廢水或廢棄物中,若能夠利用此類物質來進行厭氧醱酵產氫,使其資源化,實為合乎環保概念。本研究主要以分子生物技術,PCR-DGGE和FISH方法探討以澱粉作為基質之產氫試驗,在不同水力停留時間及不同pH (6.0、5.5)條件下微生物菌群結構變化與產氫效率間的關係。 研究結果顯示,於pH 6.0系統中主要Clostridium族群以C. butyricum、Uncultured Clostridium sp.為主,其他微生物族群則含有兼性厭氧產氫菌K. pneumoniae,及非產氫菌Pseudomonas sp.、Bifidobacterium sp.、Streptococcus sp.;然而在pH 5.5系統中Clostridium族群種類略多,包含C. butyricum、C. tyrobutyricum、Clostridium sp. B904-4和Uncultured Clostridium sp.,其他微生物族群以非產氫菌Streptococcus sp.及些許的Dialister sp.為主,而Bifidobacterium sp.僅存在於系統HRT=1和0.5 h。比較兩系統菌相變化與產氫效能,發現Clostridium族群種類與產氫效能之間並無直接相關,因此由上述兩個系統中之其他微生物族群觀看,pH 6.0系統中持續存在Bifidobacterium sp.及Pseudomonas sp.兩株非產氫菌;pH 5.5系統中並無Pseudomonas sp.,僅在HRT操作於1和0.5 h才出現Bifidobacterium sp.,由產氫數據顯示pH 6.0系統是略優於pH 5.5系統的。文獻指出Bifidobacterium sp.具有分解澱粉之能力,Pseudomonas sp.為常見於自然界中的菌屬且被認定具有分解多種有機質之能力,故推測這些菌種在系統中可將澱粉分解成小分子以提供Clostridium族群利用,使得pH 6.0系統產氫效能較佳。此外pH 6.0系統中亦存在一株兼性厭氧產氫菌K. pneumoniae,其與文獻所提及的優勢產氫菌種相符,亦可能是pH 6.0系統產氫效能優於pH 5.5系統原因之一。
Hydrogen gas has also been internationally recognized as one of the important alternative energies in the future. Among the various hydrogen production methods, fermentative hydrogen production using organic substances as feeding substrate is considered to be the most commercially potential production method, as many biological substances, such as domestic wastewater, carbohydrate in food waste, protein, fat, and fibers, can all be used to produce hydrogen. However, from the perspective of energy supply, the source of feeding substrates should be cheap and sufficient. Take starch as an example. Starch is the second abundant organic natural resource next to cellulose. It is also abundant in wastewater or wastes from certain food industry. If it can be utilized as a resource for fermentative hydrogen production, it will be compliant with the concept of environmental conservation. This study attempts to explore the microorganism community responsible for using starch as the feeding substrate for hydrogen production. Molecular biological techniques, including PCR-DGGE and FISH, are applied to discuss the relationship between the microbial community structures and hydrogen producing efficiency under various HRT and pH values (6.5, 5.5). Experimental results from this study indicated that in the pH 6.0 system, microorganisms C. butyricum and an Uncultured Clostridium sp. were the main Clostridium species existed in the system. Other microbial species existed includng facultative anaerobic hydrogen-producing bacteria, K. pneumoniae, and other non-hydrogen production bacteria, including Pseudomonas sp., Bifidobacterium sp., and Streptococcus sp. However, in the pH 5.5 system, a more complex Clostridium community, including C. butyricum, C. tyrobutyricum, Clostridium sp. B904-4 and Uncultured Clostridium sp. existed. Non-hydrogen producing Streptococcus sp. and some Dialister sp., and Bifidobacterium sp. existed only when the system operated under HRT=1 and 0.5h. In this study, hydrogen production efficiency for the pH 6.0 system was slightly superior to that of the pH 5.5 system. Based on the comparison of bacterial community and hydrogen production efficiency, no conclusion can be drawn on how the diversity of Clostridium species directly affects the reactor performance in these two pH systems. However, results from this study suggested that non hydrogen producing microbial species such as Bifidobacterium sp. and Pseudomonas sp., could also participate in fermentation process thus in a way helping the hydrogen production. Previous studies had pointed out that Bifidobacterium sp. is capable of degrading starch, and Pseudomonas sp. is a common natural microbial species and widely recognized as capable of metabolism multiple organic substances. Thus, it could be inferred that these microbial species could break down starch into small molecules then being utilized by the Clostridium species. Moreover, there was also a strain of facultative anaerobic bacteria, K. pneumoniae, in the pH 6.0 system, which was also a hydrogen-producing microorganism according to our previous studies. This was also one of the reasons why the pH 6.0 system could outperform the pH 5.5 system in hydrogen producing efficiency.
URI: http://hdl.handle.net/11455/5304
其他識別: U0005-1807200712082500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807200712082500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.