請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5334
標題: 以TiO2/Ti光電極降解水溶液中草酸鈉之研究
Study on the photoelectrocatalytic treatment of sodium oxalate by using TiO2/Ti thin-film electrode
作者: 陳昱穎
Chen, Yu-Ying
關鍵字: photoelectrocatalytic
sodium oxalate
出版社: 環境工程學系所
引用: 申洋文,車雲霞,無機化學叢書,第八卷,鈦分類,北京:科學出版社 (1998)。 吳怡玲,以化學氣相沈積法製備二氧化鈦光觸媒之研究,碩士論文,國立中興大學環境工程研究所 (2001)。 林東峰,以TTIP經由化學氣相沉積法沉積二氧化鈦薄膜之探討,碩士論文,國立清華大學化學工程研究所 (1997)。 林彥志,TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究,碩士論文,國立台灣大學化學工程學研究所 (2000)。 邵盈傑,二氧化鈦光觸媒對水溶液中小分子有機酸之去除及大腸桿菌殺菌效果之探討,碩士論文,國立中興大學環境工程研究所 (2005)。 邱琬婷,以銀、鉑改質二氧化鈦薄膜反應器之光催化活性研究,碩士論文,國立中興大學環境工程研究所 (2005)。 洪昭南等,以化學氣相沉積法成長半導體薄膜,化工技術,Vol. 7, No.1, pp. 190-204 (1999)。 胡振國譯,半導體元件-物理與技術,全華圖書公司 (1989)。 張名毅,以UV/TiO2程序處理染整廢水可行性之研究,碩士論文,國立中興大學環境工程研究所 (1999)。 許瓊旭,以CVD法製備二氧化鈦光觸媒去儲水溶液中2,4-二氯酚之研究,碩士論文,國立中興大學環境工程研究所 (2006)。 陳松興,異相催化反應,徐氏基金會 (1978)。 趙鵬文,以UV/TiO2程序處理氣相中三氯乙烷之研究,碩士論文,國立中興大學環境工程學系 (1999)。 盧明俊,毒性化學物質經二氧化鈦催化之光氧化反應,博士論文,國立交通大學土木工程研究所 (1993)。 盧明俊、阮國棟、陳重男,二氧化鈦薄膜催化光分解二氯松之研究,第十六屆廢水處理技術研討會論文集 (1991)。 盧炎田,半導體量子點與量子資訊,物理雙月刊(廿五卷四期,2003)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所 (2000)。 An, T., G. Li, X. Zhu, J. Fu, G. Sheng, and Z. Kun, “Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor,” Applied Catalysis A:General, Vol. 279, pp. 247-256 (2005). Annapragada, R., R. Leet, R. Changrani, and G. B. Raupp, “Vacuum Photocatalytic Oxidation of Trichloroethylene,” Environmental Science & Technology, Vol. 31, pp. 1898-1901 (1997). Barbeni, M., E. Pramauro, and E. Pelizzetti, “Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles,” Chemosphere, Vol. 14, pp. 195-208 (1985). Bard, A. J., Integrated Chemical Systems, Chap 6, John Wiley & Sons, Inc., New York, New York (1994). Burs, L., “Model for carrier dynamics and photoluminescence quenching in wet and dry porous silicon thin films,” Physical Review B, Vol. 53, pp. 4649-4656 (1996). Byren, J. A. and B. R. Eggins, “Photoelectrochemistry of oxalate on particulate TiO2 electrode,” Journal of Electroanalytical Chemistry, Vol. 457, pp. 61-72 (1998). Chang, H. L. M., “Structure Properties of Epitaxial TiO2 Films Grown on Sapphire by MOCVD,” J. Mater. Res.,Vol. 7, pp. 2495-2506(1992). Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?,” Journal of Catalysis, Vol. 66, pp. 383-390 (1980). Dean, J. A., Lange''s Handbook of Chemistry, Ilth ed., Mcgraw-Hill, New York, pp. 3-123 (1973). Dibble, D. A. and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams,” Environmental Science & Technology, Vol. 26, pp. 492-495 (1992). Dibble, L. A., “Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2,” Ph. D. Dissertation, Arizona State Univ. (1989). Doede, C. M. and C. A. Walker, “Photochemical Engineering,” Chemical Engineering, Vol. 62, No. 2 , pp. 159-178 (1955). Draganic, Z. D., I. G. Draganic., M. M. Kosanic, “Radiation chemistry of oxalate solutions in the presence of oxygen over a wide range of acidities,” Jourmal of Physical Chemistry, Vol. 68, pp. 2085-2092 (1964). Draganic, Z. D., M. M. Kosanic, M. T. Nenadovic, “Competition studies of the hydroxyl radical reactions in some γ-ray irradiated aqueous solutions at different pH values,” Jourmal of Physical Chemistry. Vol. 71, pp. 2390-2395 (1967). Egerton, T. A., M. Janus, and A. W. Morawski, “New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate,” Chemosphere, Vol. 63, pp. 1203-1208 (2006). Finklea, H. O., “Semiconductor Electrode,” Elsevier Press, New York (1988). Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, Vol. 93, pp. 341-350 (1993). Frank, S. N., and A. J. Bard, “Semiconductor electrode.Ⅱ: Electrochemistry at n-type TiO2 electrodes in acetonitrile solution,” Journal of the Electrochemal Soiety., Vol. 125, pp. 246-252 (1978). Gratzel, M., Energy :Resources through Photochemistry and Catalysis, Acadamic Press lnc (1983). Habibi, M. H., N. Talebian, and J. Choi, “Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation,” Thin Solid Films, Vol. 515, pp. 1461-1469 (2006). Hass, G., “Preparation, Properties and Optical Apllications of Thin Film of Titanium Dioxide,” Vacuum, Vol. 2, pp. 331-345 (1952). He, C., X. Z. Li, N. Graham, and Y. Wang, “Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application,” Applied Catalysis A : General, Vol. 305, pp. 54-63 (2006). Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, Vol. 95, pp. 69-75 (1995). Hung, C. H. ,“Gas Phase photocatalytic Degradation of Trichloroethylene and Formation of Reaction Product on Immobilized Titanium Dioxide,” Ph. D. Dissertation, University of Purdue, West Lafayette, USA (1995). Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environmental Science & Technology, Vol. 31, pp. 562-568 (1997). Jorge, S. M. A., J. J. d. Sene, and A. d. O. Florentino, “Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode,” Journal of Photochemistry and photobiology A : Chemistry, Vol. 174, pp. 71-75 (2005). Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chemical Reviews, Vol. 93, pp. 267-269 (1993). Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand,” Environmental Science & Technology, Vol. 22, pp. 798-806 (1988). Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, Vol. 89, pp. 95-100 (1982). Lewis, N. S. and M. L. Rosenbluth, “Theory of Semiconductor Materials-in Photocatalysis,” Serpone, N. and Pelizzetti, E., Ed., John Wiley & Sons, New York (1989). Li, J., L. Li, L. Zheng, Y. Xian, and L. Jin, “Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue,” Journal of Hazardous Material, Vol. 139, pp. 72-78 (2007). Li, J., L. Li, L. Zheng, Y. Xian, and L. Jin, “Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method,” Electrochimica Acta, Vol. 51, pp. 4942-4949 (2006). Li, X. Z., B. X. Zhao, and P. Wang, “Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process,” Journal of Hazardous Materials, will be published (2007). Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry,” Macmillan Publishing Co. Inc., New York. O11is, D. F., E. Pelizzetti, and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environmental Science & Technology, Vol. 25, pp. 1522-1529 (1991). Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022 (1985). Peral, J. and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” Journal of Catalysis, Vol. 136, pp. 554-565 (1992). Prengle, H. W. and C. E. Mauk, “New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection,” AICHE Symposium Series, Vol. 74, pp. 228-244 (1978). Sampath, S., H. Uchida, and H. Yoneyama, “Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide,” Journal of Catalysis, Vol. 149, pp. 189-194 (1994). Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry B, vol. 94, pp. 829-832 (1990). Shen, q., and T. Taro, “Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes,” Thin Solid Films, Vol. 438-439, pp. 167-170 (2003). Socha, A., E. Chrzescijanska, and E. Kusmierek, “Electrochemical and photoelectrochemical treatment of 1-aminonaphthalene-3, 6-disulphonic acid,” Dyes and pigments, Vol. 67, pp. 71-75 (2005). Stumm, W., “Chemstry of the Solid-Water Interface,” John Wiley and Sons, New York (1992). Suri, R. P. S., J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, Vol. 65, pp. 665-673 (1993). Texier, I., J. Ouazzani, J. Delaire, and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32 Tetrahedron,” Vol. 55, pp. 3401-3412 (1999). Turner, J. C. R., “An introduction to the theory of catalytic reactors,” Catalysis Science and Technology, Vol. 1, pp. 43-86 (1981). Vinodgopal, K., S. Hotchandani, and P. V. Kamat, “Electrochemically Assisted Photocatalysis . TiO2 Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol,” Jourmal of Physical Chemistry, Vol. 97, pp. 9040-9044 (1993). Waldner, G., M. Pourmodjib, R. Bauer, and M. Neumann-Spallart, “Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes,” Chemosphere, Vol. 50, pp. 989-998 (2002). Waldner, G., R. Gomez, and M. Neumann-Spallart, “Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase : Case of oxalic acid,” Electrochimica Acta, Vol. 52, pp. 2634-2639 (2006). Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters,” Environmental Science & Technology, Vol. 18, pp. 358A-371A (1984). Zainal, Z., and C.Y. Lee, “Properties and Photolelctrocatalytic Behaviour of Sol-Gel Derived TiO2 Thin Films,” Journal of Sol-Gel Science and Technology, Vol. 37, pp. 19-25 (2006). Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science & Technology, Vol. 22, pp. 256-257 (1988).
摘要: 本研究主要是將二氧化鈦以化學氣相沉積法( Chemical vapor deposition,CVD )固著於基材鈦板上,且外加電壓於工作電極(陽極),搭配365nm紫外燈管照射進行水溶液中草酸鈉的光電催化反應。 實驗系統採迴流批次方式進行,主要以pH值、外加電壓、電解液及污染物的初始濃度為控制變因,觀察草酸鈉降解及礦化之情形,探討草酸根離子在不同條件下的光電催化反應。 結果顯示,草酸鈉在水溶液為中性到酸性的這段區間(pH 7-3),以pH 3有最佳的去除效果;添加不同電解液對草酸鈉的去除效率有不同幅度的提升,而本研究中又以添加硫酸鈉所能提升的光電催化效益為最多。此外,進行光催化反應時,施予外加電壓可以抑制電子電洞對的再結合,提升整體的去除效率,但是給予超過0.25 V的電壓,反而會因為電壓本身的電子與TiO2價帶上電洞進行再結合而降低了光電催化的效益。 在外加電壓1 V的狀況下,不同草酸鈉初始濃度對整體的去除效益並未有很大的差別。但於外加電壓0.25 V及0.5 V時,草酸鈉的降解反應會隨著初始濃度的提升而下降。
In this study, the TiO2 thin film was deposited on the titanium plate by chemical vapor deposition (CVD) method. The photoelectrocatalytic degradation ability of TiO2 in sodium oxalate(Na2C2O4) solution at 365 nm UV lamp with additional potential was investigated. The experimental equipment was a batch system. The effects of pH, different supporting electrolytes, applied potential, and Na2C2O4 concentration were examined and discussed. In the results, the Na2C2O4 solution has better photoelectrocatalytic degradation at pH 3. Added different electrolytes has different effect, and in this study Na2SO4 addition improved the most photoelectrocatalytic effect.Added applied potential in photocatalytic reaction can prohibit recombination of electron/hole pairs, but added applied potential was over than 0.25 V, the photoelectrocatalytic effect was decrease. When added applied potential was 1V, different Na2C2O4 concentration did not has effect, but when the potential was 0.25 V and 0.5V, Na2C2O4 degradation drcrease as the initial concentration increased.
URI: http://hdl.handle.net/11455/5334
其他識別: U0005-2706200714515700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706200714515700


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。