Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5344
標題: 以頂空固相微萃取法探討水中三鹵甲烷之生成動力
The study on trihalomethane formation kinetics of water sample using HS-SPME
作者: 蔡宗哲
Tsai, Tsung-Che
關鍵字: headspace solid-phase microextraction
頂空固相微萃取
drinking water
bromide/chlorine ratio
trihalomethanes
自來水廠水樣
溴氯比
三鹵甲烷
出版社: 環境工程學系所
引用: Adin, A., Katzhendler, J., Alkaslassy, D. and Rav-Acha, C., “Trihalomethane formation in chlorinated drinking water : a kinetic model”, Water Res., 25, 797-805 (1991). Batterman, S., Zhang, L. and Wang, S., “Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide”, Water Res., 34, 1652-1658 (2000). Bull, R. J., “Health effect of drinking water disinfectants and disinfection by-products, Env. Sci. Tech., 16, 554-561(1982). Bull, R. J., Linad, S. B., Kenneth, P. C., Jano, B. R., Byron, E. B., Rex, P. and Juoko, T., “Symposium overview water chlorination:Essential process or cancer hazard”, Fundam. and Appl. Toxic., 28, 155-166 (1995). Cantor, K. P., Hoover, R., Mason, T. J., MaCabe, L. J., Assoication of cancer mortality with halomethanes in drinking water. J. nat. Cancer Inst.,61,979-985(1978) Chaidou, C. I., V. I. Georgakilas, C. Stalikas, M. Saraci and E. S. Lahaniatis, “Formation of chloroform by aqueous chlorination of organic compounds”, Chemosphere, 39, 587-594 (1999). Cho, D. H., Kong, S. H. and Oh, S. G., “Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography”, Water Res., 37, 402-408 (2003). Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., “Standard Methods for The Examination of Water and Wastewater”, 20th Edition, 4500-Cl B. Iodometric Method I, AWWA WEF, ISBN 0-87553-235-7, 4-55 (1998). Eisert,R. and Levsen, K., “Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water”, J. Chromatogr. A, 733, 143-157 (1996). El-Dib, M.A. and Ali, R. K., “THMs formation during chlorination of raw NILE river water” , Water Res., 29, 375-378 (1995). Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F. and Aggazzotti, G., “Occupational exposure to trihalomethanes in indoor swimming pools”, Sci. Total Environ., 264, 257-265 (2001). Gallard, H. and Gunten, U. V., “Chlorination of natural organic matter : kinetic of chlorination and of THM formation”, Water Res., 36, 65-74 (2002). Golfinopoulos, S. K., Nikolaou A. D., “Survey of disinfection by-products in drinking water in Athens, Greece”, Deslimiation,176, 13-24 (2005). Hsu, C. H., Jeng, W. L., Chien, R. M., and Han, B. C., ”Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan”, Environ. Res., 85, 77-82(2001). Jimenez, M., C. S., Dominguez, A. P., and Solverio, J. M. C. “Reaction kinetics of humic acid with sodium hypochlorite.” Water Res., 27, 815-820 (1993). King, W. D., Dodds, L. and Allen, A. C., “Relation between stillbirth and specific chlorination by-products in public water suppliers” , Environ. Health Perspect., 108, 883-886 (2000). Kranser S.,McGuire M.,Jacagelo J.,Patania N.,Regan K. and Aieta E. “The occurrence of disfection by-products in US drinking water. ” , Journal American Water Works Association 81,41-53 (1989) Lord, H. L. and Pawliszyn, J., “Method optimization for the analysis of amphetamines in urine by solid-phase microextraction”, Anal. Chem., 69, 3899-3906 (1997). Marhaba, T. F. and Van, D., “The variation of mass and disinfection by-product formation potential of dissolved organic matter fractioins along a convention surface water treatment plant, J. Hazaed. Mater.,74, 133-147 (2000). Mestres, M., Busto, O. and Guasch, J., “Headspace solid-phase microextraction analysis of volatile sulphides and disulphides in wine aroma”, J. Chromatogr.A, 808, 211-218 (1998). Morris, R. D., Audet, A. M., Angelillo, I. F., Chalmers, T. C. and Mosteller, F., “ Chlorination, chlorination by-products, and cancer : a meta-analysis”, Am. J. Public Health, 82, 955-963 (1992). Nikolaou, A. D., Golfinopoulos, S. K., Arhonditsis, G.B., Kolovoyiannis, V., Lekkas, T. D., “Modeling the formation of chlorination by-products in river waters with different quality”, Chemosphere, 55, 409-420 (2003). Nokes C. J., Fenton E., Randall C. J., “Modelling the formation of brominated trihalomethanes in chlorinated drinking waters”, Water Res., 33, 3557-3568 (1999). Pawliszyn, J., “Solid phase microextraction with thermal desorption using fused silica optical fiber”, Anal. Chem., 62, 2145-2148 (1990). Permazzi G., Conio O., Ziglio G., Palumbo F., Cardoso C., Meucci L. and Borgioli A., “Standards and strategies in the European Union to control trihalomethanes (THMs)in drinking water”,EUR 17289,Vol. 1,42(1997) Rodriguez, M. J. and Serodes, J., “Spatial and temporal evolution of trihalomethanes in three water distribution system”, Water Res.,35, 1572-1586 (2001). Rook, J. J., “Formation of haloforms during chlornation of natural waters”, Water Treat. Exam., 23, 234-242 (1974). Santos, F., Galcern, M. and Fraisse, D., “Application of solid-phase microextraction to the analysis of volatile organic compounds in water”, J. Chromatogr. A, 742, 181-189 (1996). Shin, D., Chung, Y., Kim, J., Park, Y and Kum, H., “Assessment of disinfection by-products in drinking water in Korea”, J. Expo. Anal. Environ. Epidemiol., 9,192-199 (1999). Singer, P. C., “Humic Substances as Precursors for Potentially Harmful Disinfection By-products”, Water Sci. Tech., 40, 25-30 (1999). Snoeyink V. L., Jenkins D., “Water chemistry” ,John Wiley & Sons ,Inc.(1980) Stack, M. A., Fitzgerald, G., O’Connell, S. and James, K. J., “Measurement of trihalomethanes in potable and recreation waters using solid phase micro extraction with gas chromatography-mass spectrometry”, Chemosphere, 41, 1821-1826 (2000). Thurman, E. M., “Organic Geochemistry of Natural Water”, Martinus Nijhoff / Dr. W.Junk Publisher, Dordrecht, The Netherlands (1985). Weishaar et al., “Evaluation of Specisic Ultraviolet Absorbance as an indicator of the Chemical Composition and Reactvity of Dissolved organic Carbon.”, Environ. Sci. Technol.,37,4702-4708(2003) Westerhoff P., Chao P.and Mash H., “Reactivity of natural organic matter with aqueous chlorine and bromine” , Water Res., 38, 1502-1513 (2004). 林恆毅,“以固相微萃取法(SPME)配合GC-ECD分析水樣中多氯聯苯”,清華大學化學研究所碩士論文(2000)。 林坤樟,“利用頂空固項為萃取法探討水中三鹵甲烷生成速率的可行性”,中興大學環境工程學系碩士論文(2005)。 洪慧鈞,“水庫優養化評估指標與優養化水體三鹵甲烷生成潛勢之探討”,中興大學環境工程學系碩士論文(2002)。 陳奕卉,“以頂空固相微萃取技術分析水中微量三鹵甲烷”,台灣大學公共衛生學院環境衛生研究所碩士論文(2001)。 蔡弦謙,“利用頂空固相微萃取法探討不同化學物質生成三鹵甲烷之研究”,中興大學環境工程學系碩士論文(2006)。 蔡美純,“從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制”,東海大學環境科學系研究所碩士論文(2002)。 薛韻國,“頂空固相微萃取法分析垃圾焚化灰飛中多氯聯苯之研究”,中興大學環境工程研究所碩士論文(2004)。 黃敬德、謝有容,“固相微萃取技術之原理及其應用”,化學,第五十六卷,第四期,313-318,(1998)。 陸佩芬,“連續吹氣/吸附劑捕捉/氣相層析質譜儀線上偵測水中三鹵甲烷”,台灣大學化學研究所碩士論文(2002)。 張鎮南 馬英石 “台灣飲用水源加氯生成消毒副產物之研究” 自來水會刊第十六卷第三期,(1997)。
摘要: 本研究採用頂空固相微萃取技術(HS-SPME)結合氣相層析法(GC-ECD)連續監測真實水樣的加氯反應,水樣包括中興大學地下水及不同淨水廠水樣(A廠原水為水庫水、B廠原水為地下水、C廠原水為湖水)。實驗時僅配製單瓶水樣,於加氯後不同時間萃取採樣分析,藉以了解各水樣的三鹵甲烷生成情況及各三鹵甲烷物種的生成量,並試圖找出水質與三鹵甲烷生成的關係。 研究結果顯示,各水樣的三氯甲烷都有著反應初期(12 hr)快速生成的特性,此時生成量為最終生成量的52-99%,之後生成速率明顯減緩,直到達平衡為止。在生成量方面,A水廠原水生成的總三鹵甲烷中有90%以上為三氯甲烷;B水廠與興大水樣中有含溴三鹵甲烷的產生,B廠水樣含溴三鹵甲烷佔總生成量的60%以上,興大水樣亦佔有40%以上。B水廠的不同水樣其總三鹵甲烷生成量為75-172 μg/L遠比其他水廠高,原因在於B水廠為了去除水中的鐵錳而加入大量的氯劑,但可能因為混合不均,又或者鐵錳消耗餘氯的量不如預期的多,使得較高的餘氯量與水中的天然有機物(NOM)持續反應,因此三鹵甲烷的生成量大增。C水廠因為水中的有機前驅物過少,限制了總三鹵甲烷的生成,使得即使加氯量再增加,THMs的生成量改變並不明顯。 綜合研究結果顯示,當水中的有機前驅物足夠多時,隨著加氯量倍增水樣中三鹵甲烷的生成量也會有明顯的增加。另外水中溴氯比則決定了三鹵甲烷生成物種的比例,由於台灣地區各水廠在自來水中會存留0.2-1.0 mg/L的餘氯,在此情況下,依本研究結果顯示水中僅需要0.05-0.15 mg/L的溴離子便會明顯影響溴化三鹵甲烷佔總三鹵甲烷的比例。
In this study , headspace solid-phase microextraction coupled with gas chromatography (GC-ECD) was used to monitor the formation of trihalomethanes (THMs) during chlorination in raw water and treated water samples collected from three water utilities . The water sources are as follows : reservoir water (sample A) , ground water (sample B) and lake water (sample C) . Ground water samples collected from our building located in National Chung-Hsing University (NCHU) campus were also investigated . According to the extracting technique developed by our laboratory only one bottle (60 mL) was used for each different sample (50 mL) to continuously monitor the formation kinetics of THMs without dechlorinating the chlorine residual before extraction . The general characteristics of the waters studied show that the pH was at the range of 7-8 , total organic carbon (TOC) was 18-55 mg/L (except for sample C < 5 mg/L) , chloride ion was 2-22 mg/L . The bromide ion concentrations were not detectable ( < 0.15 mg/L) for all samples . The results of chlorination observed by all water samples indicate that the formation rate of trichloromethane (CHCl3) was significantly high during the early stage (within 12 hr reaction time) and then almost level off to the end of the reaction ( ~ 70 hr) . Trichloromethane formed during the early stage is reaching 52-99% of the total amount . For the chlorine dose of 1.0 mg Cl2/L , sample A has the highest concentration of total THMs (TTHMs) . Sample B and NCHU ground water sample have detected more significant fractions of brominated species of THMs . For sample C , increasing chlorine dose ( 0.5 mg Cl2/L → 1.0 mg Cl2/L ) does not increase the formation of THMs , probably because of the low organic content of this water sample . In addition , the results of this study also have shown that bromide/chlorine ratio in the reaction solution plays an important role in determine the formation percentages of brominated species of THMs .
URI: http://hdl.handle.net/11455/5344
其他識別: U0005-2708200711175200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200711175200
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.