Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5348
標題: 多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究
Preparation of alumina-supported CuCo catalysts by the polyol process for VOC oxidation
作者: 呂玲儀
Liu, Ling-Yi
關鍵字: catalytic incineration
觸媒焚化
polyol process
nano-bimetallic catalysts
oxidation of hydrocarbon
多元醇法
雙金屬奈米觸媒
碳氫化合物之氧化反應
出版社: 環境工程學系所
引用: 丁志銘等編著,奈米科技-基礎、應用與實作-,南區奈米科技K-12教育發展中心,高立圖書,2005初版。 王奕凱, 邱宏明, 李秉傑合譯,非均勻系催化原理與應用,渤海堂,台北巿1988年。 王仁澤譯,毒物學概論,高立圖書有限公司,1997。 王鉦源,以化學還原法製備奈米級銀鈀微粉,成功大學化工系研究所,碩士論文,2002。 尹邦躍,奈米時代,五南圖書出版股份有限公司,台北市,2003。 朱信,工業局, 石化工業因應揮發性有機污染物管制規範之對策研究,經濟部工業局專案研究計劃,1994。 江旭禎,儀器總覽:化常分析儀器,國科會,第77-79頁 行政院環境保護署空氣品質暨噪音管制處,第三廠業者座談會簡報-一般性固定污染源揮發性有機空氣污染物排放管制標準,中技社 環境技術發展中心,2006年。 李定粵編著, 觸媒的原理與應用,國立編譯館, 1991年初版。 洪文雅,有機廢氣處理技術簡介,經濟部工業局台灣環保產業,雙月刊,第21期,2003。 吳佩蓉,謝祝欽,蔡俊鴻,姚永貞,魏憶琳,余志達,吳俊儀,徵收揮發性有機物收費可能性評估與規劃架構之探討,中華民國環境工程學會,第十八屆空氣污染控制技術研討會論文集,高雄,2001 年。 吳樺光,汽車表面塗裝業VOCs 管制理論與實務,元智大學機械工程研究所,碩士論文,2002。 吳國卿,以奈米金觸媒去除空氣中污染物(CO、O3),奈米技術於環境領域應用及相關議題論壇(I),行政院環境環保署,2003。 吳異琦,除臭吸附劑之開發,中正大學化工所,碩士論文,2004。 吳政峰, 溫度和濕度效應對光催化分解氣相揮發性有機物之影響,中山大學環工所,博士論文,2004。 吳以壯,以選擇性觸媒還原技術同時去除NO及VOCs之效率測試研究,交通大學環工所,碩士論文,2005。 馬振基 主編,奈米材料科技原理與應用,全華圖書,2005。 柯以侃 主編,儀器分析,文京圖書出版,1996。 梁煜申,鈀觸媒處理焚化廢氣中CO、NO之動力研究,中興大學環工系,碩士論文,2003。 陳俐穎,多元醇法製備奈米氧化金屬觸媒於低溫下催化VOCs之研究,國立中興大學環工系,碩士論文,2006。 楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工系,碩士論文,2000。 張立德編著,奈米材料 ,五南圖書,2002年初版。 閻子峰編著、張勁燕校定,奈米催化技術,五南圖書,344-470頁,2004年初版。 蔡淑惠,合金奈米粒子的製備與應用,成功大學化學系研究所,碩士論文,2003。 魏資穎、沈克鵬,PVC 合成皮業有機廢氣處理技術建議,中華民國環境工程學會,第十八屆空氣污染控制技術研討會論文集,高雄,2001年。 謝國田,VOC觸媒焚化技術介紹,經濟部工業局台灣環保產業,雙月刊,第18期,2003。 張立德,奈米材料,五南圖書 ,2002 Alvarez-Merino, M. A., Carrasco-Marin, F., & Moreno-Castilla, C. (1997). Adsorption of SO2 from flowing air by alkaline-oxide-containing activated carbons. Applied Catalysis B: Environmental, 13(3-4), 229-240. Alvim-Ferraz, M. C. M., & Gaspar, C. M. T. B. (2004). Active carbons impregnated before activation of olive stones: Catalytic activity to remove benzene from gaseous emissions. Journal of Physics and Chemistry of Solids, 65(2-3), 655-659. Andrade Sales, E., Benhamida, B., Caizergues, V., Lagier, J., Fievet, F., & Bozon-Verduraz, F. (1998). Alumina-supported pd, ag and pd-ag catalysts: Preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Applied Catalysis A: General, 172(2), 273-283. Barrett, W. E., & Craver, B. N. (1951). A method of sensitizing guinea pigs to horse serum that eventuates in 100 per cent mortality after challenging. Journal of Allergy, 22(4), 361-367. Bonet, F., Grugeon, S., Herrera Urbina, R., Tekaia-Elhsissen, K., & Tarascon, J. -. (2002). In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences, 4(5), 665-670. Brayner, R., Viau, G., da Cruz, G. M., Fievet-Vincent, F., Fievet, F., & Bozon-Verduraz, F. (2000). Preparation, characterization and reactivity of Pd/Nb2O5 catalysts in hexa-1,5-diene hydrogenation. Catalysis Today, 57(3-4), 187-192. Cant, Noel W. & Cowan, Andrew D.(1997). The mechanism of nitrogen oxides reduction by hydrocarbons and in other systems. Catalysis Today, 35(1-2), 89-95. Chandler, B. D., Schabel, A. B., Blanford, C. F., & Pignolet, L. H. (1999). Preparation and characterization of supported bimetallic pt-au particle catalysts from molecular cluster and chloride salt precursors. Journal of Catalysis, 187(2), 367-384. Chandler, B. D., Schabel, A. B., & Pignolet, L. H. (2000). Preparation and characterization of supported bimetallic pt-au and pt-cu catalysts from bimetallic molecular precursors. Journal of Catalysis, 193(2), 186-198. Chen, C., & Jehng, J. (2004). Amination application over nano-mg-ni hydrogen storage alloy catalysts. Applied Catalysis A: General, 267(1-2), 103-110. Chen, S., Xu, N., & Shi, J. (2004). Structure and properties of polyether polyols catalyzed by Fe/Zn double metal cyanide complex catalyst. Progress in Organic Coatings, 49(2), 125-129. Chi-Sheng Wu, J., & Chang, T. (1998). VOC deep oxidation over pt catalysts using hydrophobic supports. Catalysis Today, 44(1-4), 111-118. Chu, H. and Lee, W. T (1998).The Effect of Sulfur Poisoning of Dimethy Disulfide on the Catalytic Incineration over Pt-Al2O3 Catalyst. The Sci. of the Total environ, 209, 217-224. Chu, W. and Windawi, H. (1996).Control VOCs via Catalytic Oxidation . Chem. Eng. Prog., 92(37). Clarke, J. K. A., Manninger, I., & Baird, T. (1978). Preparation of supported platinum-gold, platinum-tin, and rhodium-copper catalysts and some tests with n-hexane/hydrogen reactant. Journal of Catalysis, 54(2), 230-242. Corp, R. (1978).Control techniques for volatile organic emissions from stationary source, USEPA, EPA-450, 2-78-022 . Coq, B., & Figueras, F. (2001). Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance. Journal of Molecular Catalysis A: Chemical, 173(1-2), 117-134. Cowan, Andrew D., Cant, Noel W., Haynes., Brian S. & Nelson, Peter F. (1998).The Catalytic Chemistry of Nitromethane over Co-ZSM5 and Other Catalysts in Connection with the Methane-NOxSCR Reaction. Journal of Catalysis, 176( 2), 329-343. Dalmon, J. A., & Martin, G. A. (1980). Hydrogenolysis of C2H6, C3H8 and n-C4H10 over silica-supported nickel-copper catalysts. Journal of Catalysis, 66(1), 214-221. Ducamp-Sanguesa, C., Herrera-Urbina, R., & Figlarz, M. (1992). Synthesis and characterization of fine and monodisperse silver particles of uniform shape. Journal of Solid State Chemistry, 100(2), 272-280. Farrauto, R.J., Bartholomew, C.H., (1997). Fundamentals of Industrial Catalytic Processes. Blackie, Chapman & Hall, London. Fievet, F., Lagier, J. P., Blin, B., Beaudoin, B., & Figlarz, M. (1989). Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 32-33(Part 1), 198-205. Garbowski, E., & Primet, M. (1995). Corrigendum to: Catalytic combustion of methane over palladium on alumina catalysts: Evidence for reconstruction of particles (appl. catal. A, 109 (1994) 277-291) (APCATA 2705). Applied Catalysis A: General, 125(1), 185-187. Hidefumi Hirai, Noboru Yakura, Yoko Seta, Shinya Hodoshima (1998)). Reactive and Functional Polymers. 121-131. Jiang, L., Sun, G., Sun, S., Liu, J., Tang, S., Li, H., et al. (2005). Structure and chemical composition of supported pt-sn electrocatalysts for ethanol oxidation. Electrochimica Acta, 50(27), 5384-5389. Jiang, L., Sun, G., Zhou, Z., Zhou, W., & Xin, Q. (2004). Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catalysis Today, 93-95, 665-670. Kim, S. C. (2002). The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. Journal of hazardous materials, 91(1-3), 285-299. Konsolakis, M., Vrontaki, M., Avgouropoulos, G., Ioannides, T., & Yentekakis, I. V. (2006). Novel doubly-promoted catalysts for the lean NOx reduction by H2 + CO: Pd(K)/Al2O3-(TiO2). Applied Catalysis B: Environmental, 68(1-2), 59-67. Kurihara, L. K., Chow, G. M., & Schoen, P. E. (1995). Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials, 5(6), 607-613. Lampert, J. K., Kazi, M. S., & Farrauto, R. J. (1997). Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. Applied Catalysis B: Environmental, 14(3-4), 211-223. Lippens, B. C., & de Boer, J. H. (1965). Studies on pore systems in catalysts : V. the t method. Journal of Catalysis, 4(3), 319-323. Liu, Z., Guo, B., Hong, L., & Lim, T. H. (2006). Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communications, 8(1), 83-90. Liu, Z., Ling, X. Y., Su, X., Lee, J. Y., & Gan, L. M. (2005). Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 149, 1-7. Lojewska, J., Kolodziej, A., Dynarowicz-Latka, P., & Weselucha-Birczynska, A. (2005). Engineering and chemical aspects of the preparation of microstructured cobalt catalyst for VOC combustion. Catalysis Today, 101(2), 81-91. Lombardo, E. A., Sill,G. A., d''Itri, J. L., & Hall, W. K. (1998). The Possible Role of Nitromethane in the SCR of NOxwith CH4over M-ZSM5 (M=Co, H, Fe, Cu) Journal of Catalysis, 173(2), 440-449. Luo, M., Yuan, X., & Zheng, X. (1998). Catalyst characterization and activity of ag-mn, ag-co and ag-ce composite oxides for oxidation of volatile organic compounds. Applied Catalysis A: General, 175(1-2), 121-129. Maira, A. J., Yeung, K. L., Soria, J., Coronado, J. M., Belver, C., Lee, C. Y., et al. (2001). Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Applied Catalysis B: Environmental, 29(4), 327-336. Meunier, F. C., Breen, J. P., Zuzaniuk, V., Olsson, M., & Ross, J. R. H. (1999). Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts. Journal of Catalysis, 187(2), 493-505. Meunier, F. C., Zuzaniuk, V., Breen, J. P., Olsson, M., & Ross, J. R. H. (2000). Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: Kinetic and in situ DRIFTS study. Catalysis Today, 59(3-4), 287-304. Miyazaki, A., Balint, I., Aika, K., & Nakano, Y. (2001). Preparation of ru nanoparticles supported on [gamma]-Al2O3 and its novel catalytic activity for ammonia synthesis. Journal of Catalysis, 204(2), 364-371. National Research Council (1991). Rethinking the ozone Problem in Urban and Regional Air Pollution, National Academy Press, Washington, D.C. Obuchi, Akira., Wögerbauer,Clemens., Köppel, René. and Baiker, Alfons.( 1998). Reactivity of nitrogen containing organic intermediates in the selective catalytic reduction of NOx with organic compounds: a model study with tert-butyl substituted nitrogen compounds. Applied Catalysis B: Environmental, 19(1), 9-22. Octave Levenspiel (1999), Chemical Reaction Engineering.third edition, WILEY. Papaefthimiou, P., Ioannides, T., & Verykios, X. E. (1998). Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs). Applied Catalysis B: Environmental, 15(1-2), 75-92. Pieck, C. L., Marecot, P., & Barbier, J. (1996). Preparation of pt---Re/Al2O3 catalysts by surface redox reactions II. influence of the acid medium on re deposition and pt---re interaction. Applied Catalysis A: General, 143(2), 283-298. Ponec, V. Bond, G.C. (1995), Catalysis by Metals and Alloys, Elsevier, Amsterdam. Sachdev, A., & Schwank, J. (1989). Microstructure and reactivity of supported bimetallic platinum-gold catalysts. Journal of Catalysis, 120(2), 353-369. Sachtler, J. W. A., & Somorjai, G. A. (1984). Cyclohexane dehydrogenation catalyzed by bimetallic au---pt(111) single-crystal surfaces. Journal of Catalysis, 89(1), 35-43. Scheff, P. A., Wadded, R. A. (1993). Receptor modeling of volatile organic compounds-emission inventory and validation, Envirion. Sci. Technol. 27(4), 257 . Schmid, G. (1994). Cluster and Colloids. VCH, Weinheim. Simplicio, L. M. T., Brandao, S. T., Sales, E. A., Lietti, L., & Bozon-Verduraz, F. (2006). Methane combustion over PdO-alumina catalysts: The effect of palladium precursors. Applied Catalysis B: Environmental, 63(1-2), 9-14. Simplício L. M., Brandão S. T., Sales E. A., Lietti L., Verduraz F. B. (2005) Methane combustion over PdO-alumina catalysts: The effect of palladium precursors. Applied catalysis B: Environmental, 63, 9-14. Smits, R. H. H., & Iwasawa, Y. (1995). Reaction mechanisms for the reduction of nitric oxide by hydrocarbons on Cu-ZSM-5 and related catalysts.Applied Catalysis B: Environmental, 6(3), 201-207. Sparks, D. E., Patterson, P. M., Jacobs, G., Dogimont, N., Tackett, A., & Crocker, M. (2006). Bi2O3/Al2O3 catalysts for the selective reduction of NO with hydrocarbons in lean conditions. Applied Catalysis B: Environmental, 65(1-2), 44-54. Spasova, I., Nikolov, P., & Mehandjiev, D. (2005). Adsorption of NO on alumina-supported oxides and oxide-hydroxides of manganese. Journal of colloid and interface science, 290(2), 343-349. Spivey, J. L. (1987). Complete catalystic oxidation of volatile organics. Ind. Engng. Chem. Res. , Vol.26, 2165-2180. Tanaka, T., Okuhara, T., & Misono, M. (1994). Intermediacy of organic nitro and nitrite surface species in selective reduction of nitrogen monoxide by propene in the presence of excess oxygen over silica-supported platinum. Applied CatalystB:, Environmental 4(1), 1-9. Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., & Shen, W. (2005). The role of sn in pt-Sn/CeO2 catalysts for the complete oxidation of ethanol. Journal of Molecular Catalysis A: Chemical, 235(1-2), 122-129. Tekaia-Elhsissen, K., Bonet, F., Silvert, P. -., & Herrera-Urbina, R. (1999). Finely divided platinum-gold alloy powders prepared in ethylene glycol. Journal of Alloys and Compounds, 292(1-2), 96-99. Toshima, N., & Wang, Y. (1994). Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters. Langmuir, 10(12), 4574-4580. Tsuji, M., Hashimoto, M., Nishizawa, Y., & Tsuji, T. (2004). Synthesis of gold nanorods and nanowires by a microwave-polyol method. Materials Letters, 58(17-18), 2326-2330. Tsuji, M., Nishizawa, Y., Matsumoto, K., Kubokawa, M., Miyamae, N., & Tsuji, T. (2006). Effects of chain length of polyvinylpyrrolidone for the synthesis of silver nanostructures by a microwave-polyol method. Materials Letters, 60(6), 834-838. Toshima, N., Wang Y.(1994). Preparation and catalysis of novel colloidal dispersions of cooper/noble metal bimetallic clusters, Langmuir, 10, 4574. Tzitzios, V., Niarchos, D., Margariti, G., Fidler, J., & Petridis, D. (2005). Synthesis of CoPt nanoparticles by a modified polyol method: Characterization and magnetic properties. Nanotechnology, 16(2), 287-291. Van De Beld, L., Bijl, M. P. G., Reinders, A., Van Der Werf, B., & Westerterp, K. R. (1994). The catalytic oxidation of organic contaminants in a packed bed reactor. Chemical Engineering Science, 49(24, Part 1), 4361-4373. Van den Brink,Ruud W., Louw, R., & Mulder, P. (1998). Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a pt/[gamma]-Al2O3 catalyst. Applied Catalysis B: Environmental, 16(3), 219-226. Van Hardeveld, R., & Hartog, F. (1969). The statistics of surface atoms and surface sites on metal crystals. Surface Science, 15(2), 189-230. Van Santen, R. A., & Sachtler, W. M. H. (1977). Model calculations of chemisorption on transition metal clusters. Surface Science, 63, 358-369. Van Schaik, J. R. H., Dessing, R. P., & Ponec, V. (1975). Reactions of alkanes on supported pt-au alloys. Journal of Catalysis, 38(1-3), 273-282. Vralstad, T., Oye, G., Stocker, M., & Sjoblom, J. Synthesis of comparable co-MCM-48 and co-MCM-41 materials containing high cobalt contents. Microporous and Mesoporous Materials, In Press, Corrected Proof Wang, C. (2004). Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene. Chemosphere, 55(1), 11-17. Wey, M., Yu, L., & Jou, S. (1998). The influence of heavy metals on the formation of organics and HCl during incinerating of PVC-containing waste. Journal of hazardous materials, 60(3), 259-270. Wojciechowska, M., Zielinski, M., Malczewska, A., Przystajko, W., & Pietrowski, M. (2006). Copper-cobalt oxide catalysts supported on MgF2 or Al2O3--their structure and catalytic performance. Applied Catalysis A: General, 298, 225-231. Wu, J. C. and Chang, T. Y. (1998). VOC Deep Oxidation over Pt Catalysts Using Hydrophobic Supports. Catalysis Today, 44(1-4),111-118. Yeates, R. C., & Somorjai, G. A. (1987). Surface structure sensitivity of alloy catalysis: Catalytic conversion of n-hexane over au-pt(111) and au-pt(100) alloy crystal surfaces. Journal of Catalysis, 103(1), 208-212. Ying, Z., Shengming, J., Guanzhou, Q., & Min, Y. (2005). Preparation of ultrafine nickel powder by polyol method and its oxidation product. Materials Science and Engineering: B, 122(3), 222-225. Yokoyama, C., & M., Misono. (1994). Catalytic Reduction of Nitrogen Oxides by Propene in the Presence of Oxygen over Cerium Ion-Exchanged Zeolites : II. Mechanistic Study of Roles of Oxygen and Doped Metals. Journal of Catalysis, 150(1), 9-17. Zhang, Q., Li, J., Liu, X., & Zhu, Q. (2000). Synergetic effect of pd and ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Applied Catalysis A: General, 197(2), 221-228 Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152.
摘要: 揮發性有機化合物(volatile organic compound,VOC)已被認為是主要空氣污染物之一,許多國家皆已訂定相關法規以期能減少其排放量。而觸媒焚化係利用觸媒催化反應現象,降低廢氣中VOC 氧化之活化能,使觸媒可於較低溫環境下即能有效地氧化破壞 VOC,其可提供較多優點,如節省能源、可應用於低濃度之污染物而且不須額外添加燃料等。 目前應用於碳氫化合物處理之氧化觸媒主要為氧化鋁擔持單一貴重金屬或雙金屬,且多以含浸法為主要之製備方法。然而含浸法難以控制被擔持金屬顆粒之最終尺寸與形狀。由研究文獻指出,選用多元醇法製備奈米金屬觸媒時,具可大量製備、金屬大小及形狀容易控制之兩大優點,而且可獲得大小型態均ㄧ之活性相均勻分佈於擔體上。因此本研究目的為利用多元醇法製備銅鈷雙金屬觸媒,並藉由改變製備參數期能獲得具高活性之觸媒,應用於觸媒焚化以去除VOC。再利用BET、ICPMS、FESEM、TEM、XRD、FTIR進行觸媒特性分析。 結果指出,本研究條件下之觸媒,當銅鈷比例為1:3對甲苯之催化氧化活性於200℃時達70%去除率,應用於實驗室規模流體化床之煙道氣中,對苯之去除率達100%。研究結果顯示銅扮演稀釋劑之角色而將鈷予以分散;且合金中銅含量會影響合金活性對甲苯催化氧化之轉化率,隨著合金中之銅含量增加,粒子之聚集現象減少而小顆粒粒子增加;當合金中銅之添加比例大於1時(Cu/Co=1)反而造成觸媒活性降低之現象。多元醇法成功製備雙金屬奈米觸媒並應用於觸媒焚化法來去除揮發性有機污染氣體。
Volatile organic compound (VOC) is considered as one of the main air pollutants, and in many countries, legislation has already been introduced to reduce their emission. Catalytic combustion is catalytic reaction by reducing the activation energy of VOC to effect oxidative destruction at lower temperature. The major advantage of catalytic combustion is that it can operate with very dilute pollutants, which can be thermally combusted without additional fuel. Supported-monometal or bimetals have been examined as catalysts for catalytic oxidation of hydrocarbon. The conventional supported catalysts are prepared by the impregnation of oxide supports with an aqueous solution of metal precursor. However, when catalysts are prepared by impregnation, the metal particles after drying and calcinations are not uniform in size and shape.It has been evidenced that there are two advantages for preparing nanostructured powders and coatings by polyol process. One is the higher quantity of sample can be prepared, and the other is the particle size and shape can be easily control. This could obtain the synthesis of uniform metal particle size and also led to high dispersion over support. Therefore, the purpose in this study is to prepare CuCo bimetallic catalyst with the polyol process, which obtain high activity by controlling the parameter, and subsequently evaluate the feasibility for catalytic incineration of VOC. Catalyst was characterized by means of BET, ICPMS, FESEM, TEM, XRD, and FTIR. It was found that the catalysts prepared with the polyol process attain to 70% removal for toluene oxidation and 100% for benzene oxidation in flue gas of pilot-scaled fluid incinerator. The result of this study demonstrated that the Cu acted as the dispersant and gave the uniform distribution of cobalt over the support. The alloy activation and the toluene oxidation conversion was influenced by the content of Cu. With increasing of copper content in the alloy, the gathering of the particle was reduced and the tiny particle formation increased. As Cu/Co is greater than 1, the catalytic activation decreases. The obtained results indicated that the polyol process could successfully manufacture the nano-bimetallic catalysts which could be applied to remove VOC by catalytic incineration.
URI: http://hdl.handle.net/11455/5348
其他識別: U0005-2806200712003700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806200712003700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.