Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5350
標題: 以含浸法製備二氧化鈦光觸媒去除揮發性有機污染物之研究
Preparation of titanium dioxide photocatalyst to remove VOC by impregnation method
作者: 陳佩君
Chan, Pei-Jun
關鍵字: Photocatalyst
光觸媒
Toluene
甲苯
出版社: 環境工程學系所
引用: 尹邦躍,〝奈米時代〞,五南圖書出版股份有限公司,(2002) 王奕凱、邱宏明、李秉傑,〝非均勻系催化原理與應用〞,渤海堂文化事業 有限公司,(1988) 李定粵,〝觸媒的原理與應用〞,正中書局,(1999) 馬振基,〝奈米材料科技原理與應用〞,全華科技圖書股份有限公司,(2005) 高濂、鄭珊、張青紅,〝奈米光觸媒〞,五南圖書出版股份有限公司,(2004) 陳富亮,〝最新奈米光觸媒應用技術〞,林斯頓國際,(2003) 閻子峰,〝奈米催化技術〞,五南圖書出版股份有限公司,(2004) 藤嶋昭、橋本和仁、渡部俊也,〝圖解光觸媒〞,世茂出版有限公司,(2006) 王文,〝以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研究〞,國立台灣科技大學,博士論文,(2003) 江立偉,〝以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體之反應行為〞,國立台灣科技大學,碩士論文,(1999) 申永順,〝以高級氧化程序處理空揮發性有機污染物反應行為及光反應器設計之研究〞,國立台灣科技大學,博士論文,(1998) 余武融,〝含氧量與添加劑對焚化污染物影響之研究〞,國立中興大學環境工程研究所,碩士論文,(2004) 吳政峰,〝溫度與溼度效應對光催化分解氣相揮發性有機物之影響〞,國立中山大學,博士論文,(2005) 洪文雅,〝揮發性有機廢氣處理技術簡介〞,台灣環保產業雙月刊,第21期,(2003) 馬志明,〝以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究〞,國立台灣科技大學,碩士論文,(1998) 張佑甄,〝溶膠-凝膠法/含浸法製備鈀觸媒於去除污染物CO及NO之研究〞,國立中興大學,碩士論文,(2005) 陳俐穎,〝多元醇法製備奈米活性碳觸媒於低溫下催化 之研究〞,國立中興大學,碩士論文,(2006) 陳淨修、楊慶熙,〝台灣地區有害空氣污染物管制〞,工業污染防治,第52卷,(1994) 楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環境工程研究所,碩士論文,(2000) 蔣博欽,〝以流體化床控制焚化廢氣中污染物之研究〞,國立中興大學環境工程研究所,碩士論文,(2002) 劉國棟,〝 管制趨勢發展〞,工業污染防治,48期,(1993) 鄭翰聰,〝活性碳擔持觸媒對一氧化碳去除之研究〞,國立中興大學環境工程研究所,碩士論文,(2004) 盧伯麟,〝二氧化鈦光觸媒薄膜製備及改質與環境汙染物去除之研究〞,私立逢甲大學,碩士論文,(2005) 魏玉麟,〝流動床爐處理工業有機汙泥之PAHs排放探討〞,第十一屆空氣污染控制技術研討會論文集,(1994) 工業技術研究院,奈米科技研發中心 行政院環保署,物質安全資料表 行政院環保署,有害空氣污染物管制規範及排放標準研定計畫 JCPDS ( Joint Committee on Powder Diffraction Standards ) 資料庫 Stumm, W., Sigg, L., & Sulzberger, B. (1992). Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systemsWiley Ameen, M. M., & Raupp, G. B. (1999). Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air. Journal of Catalysis, 184(1), 112-122. Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., et al. (1999). Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: Mechanistic aspects and FT-IR investigation. Applied Catalysis B:Environmental, 20(1), 15-27. Borton, R. G., Clark, W. D. and Seeler, W. R. (1990). Fate of metals in waste combustion system. Combustion Science and Technology, 74, 327-342. Bouzaza, A., & Laplanche, A. (2002). Photocatalytic degradation of toluene in the gas phase: Comparative study of some TiO2 supports. Journal of Photochemistry and Photobiology A: Chemistry, 150(1-3), 207-212. Byun, D., Jin, Y., Kim, B., Lee, J. K., & Park, D. (2000). Photocatalytic TiO2 deposition by chemical vapor deposition. Journal of hazardous materials, 73(2), 199-206. Cao, L., Gao, Z., Suib, S. L., Obee, T. N., Hay, S. O., & Freihaut, J. D. (2000). Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. Journal of Catalysis, 196(2), 253-261. Chiang, P. C., You, J. H., Chang, S., & Wei, Y. (1992). Identification of toxic PAH compounds in emitted particulates from incineration of urban solid wastes. Journal of hazardous materials, 31(1), 29-37. Dibble, L. A., & Raupp, G. B. (1992). Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams. Environmental Science and Technology, 26(3), 492. Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. Dubey, N., Rayalu, S. S., Labhsetwar, N. K., Naidu, R. R., Chatti, R. V., & Devotta, S. (2006). Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange. Applied Catalysis A: General, 303(2), 152-157. Einaga, H., Futamura, S., & Ibusuki, T. (2002). Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B: Environmental, 38(3), 215-225. Fogler, S. H. (1999). Elements of chemical reaction engineeringPrentice Hall. Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical reviews, 93(1), 341-357. Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 1(1), 1-21. Fukuzawa, S., Sancier, K. M., & Kwan, T. (1968). Photoadsorption and phofodesorption of oxygen on titanium dioxide. Journal of Catalysis, 11(4), 364-369. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical reviews, 95(1), 69-96. Jaeger, C. D., & Bard, A. J. (1979). Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO 2 particulate systems. J.Phys.Chem, 83(24), 3146. Jang, J. S., Li, W., Oh, S. H., & Lee, J. S. (2006). Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chemical Physics Letters, 425(4), 278-282. Keshmiri, M., Troczynski, T., & Mohseni, M. (2006). Oxidation of gas phase trichloroethylene and toluene using composite sol-gel TiO2 photocatalytic coatings. Journal of hazardous materials, 128(2), 130-137. Khalfi, A., Trouve, G., Delobel, R., & Delfosse, L. (2000). Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures. Journal of Analytical and Applied Pyrolysis, 56(2), 243-262. Litter, M. I., & Navio, J. A. (1996). Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology, A: Chemistry, 98(3), 171. Maira, A. J., Yeung, K. L., Soria, J., Coronado, J. M., Belver, C., Lee, C. Y., et al. (2001). Gas-phase photo-oxidation of toluene using nanometer-size TiO 2 catalysts. Applied Catalysis B: Environmental, 29(4), 327-336. Nakajima, A., Hashimoto, K., Watanabe, T., Takai, K., Yamauchi, G., & Fujishima, A. (2000). Transparent superhydrophobic thin films with self-cleaning properties. Langmuir, 16(17), 7044-7047. Obee, T. N. & Brown, R. T. (1995). TiO2 photocatalysis for indoor air applications: effects of gumidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ.Sci.Technol, 29, 1223-1231. Obee, T. N. (1996). Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environ.Sci.Technol, 30(12), 3578–3584. O''Shea, V., Alvarez-Galvan, M., Fierro, J., & Arias, P. (2005). Influence of feed composition on the activity of mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 57(3), 191-199. Qi, X., Wang, Z., Zhuang, Y., Yu, Y., & Li, J. (2005). Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide. Journal of hazardous materials, 118(1), 219-225. Peill, N. J., & Hoffmann, M. R. (1996). „Chemical and physical characterization of a TiO 2-coated fiber optic cable reactor “. Environ.Sci.Technol, 30, 2806–2812. Peng, S., Li, Y., Li, F., & Li, C. (2006). Preparation of S-doped TiO2 photocatalyst and degradation of methyl orange under visible light. Gongneng Cailiao/Journal of Functional Materials, 37, 560-562. Peral, J., & Ollis, D. F. (1992). Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J.Catal, 136, 554-565. Prairie, M. R., Evans, L. R., Stange, B. M., & Martinez, S. L. (1993). An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environmental science & technology, 27(9), 1776-1782. Sun, J., Wang, X., Sun, J., Sun, R., Sun, S., & Qiao, L. (2006). Photocatalytic degradation and kinetics of orange G using nano-sized sn(IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical, 260(1), 241-246. Thomai, P., Yiannis, A. L., Joel, C., Yurit, M. D. and Paul, V., (1996). Aromatic hydrocarbon emissions from burning poly (styrene), poly (ethylene) and PVC particles at high temperatures. Combustion Science and Technology, 116(1-6), 91-128. Tseng, J. M., & Huang, C. P. (1991). Removal of chlorophenols from water by photocatalytic oxidation. Water Science and Technology, 23(1), 377-387. Vorontsov, A. V., Savinov, E. N., & Smirniotis, P. G. (2000). Vibrofluidized- and fixed-bed photocatalytic reactors: Case of gaseous acetone photooxidation. Chemical Engineering Science, 55(21), 5089-5098. Wang, K., Tsai, H., & Hsieh, Y. (1998). Kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis B:Environmental, 17(4), 313-320. Wey, M., Chao, C., Chen, J., & Yu, L. (1998a). Relationship between the quantity of heavy metal and PAHs in fly ash. Journal of the Air & Waste Management Association, 48(8), 750-756. Wey, M., Chao, C., Wei, M., Yu, L., & Liu, Z. (2000). Influence of heavy metals on partitioning of PAHs during incineration. Journal of hazardous materials, 77(1), 77-87. Wey, M., Chao, C., & Yu, L. (1996). Influences of heavy metals on PAH formation during incineration. Toxicological and Environmental Chemistry, 56(1), 35-45. Wey, M., Yu, L., & Jou, S. (1998b). Influence of heavy metals on the formation of organics and HCl during incinerating of PVC-containing waste. Journal of hazardous materials, 60(3), 259-270. Wey, M., Yu, L., Jou, S., Chiang, B., & Wei, M. (1999). Adsorption on carbon and zeolite of pollutants from flue gas during incineration. Journal of Environmental Engineering, 125(10), 925-932. Wu, J. C., & Chang, T. (1998). VOC deep oxidation over pt catalysts using hydrophobic supports. Catalysis Today, 44(1), 111-118. Wu, J., Hung, C., & Yuan, C. (2005). Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology A: Chemistry, 170(3), 299-306. Xu, J., Shi, Y., Huang, J., Wang, B., & Li, H. (2004). Doping metal ions only onto the catalyst surface. Journal of Molecular Catalysis A: Chemical, 219(2), 351-355. Yasuda, K., & Takahashi, M. (1998). The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. Journal of the Air & Waste Management Association(1995), 48(5), 441-447. Yuan, Z., Jia, J., & Zhang, L. (2002). Influence of co-doping of zn(II) + fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics, 73(2), 323-326. Yubuta, K., Sato, T., Nomura, A., Haga, K., & Shishido, T. (2007). Structural characterization of ZnO nano-chains studied by electron microscopy. Journal of Alloys and Compounds, 436(1-2), 396-399. Zuo, G., Cheng, Z., Chen, H., Li, G., & Miao, T. (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of hazardous materials, 128(2), 158-163.
摘要: 本研究主要是以紫外光/二氧化鈦程序,探討各影響因子間對光催化分解有機物之影響。首先以甲苯為污染物,藉由改變不同的影響因子,並輔以FE-SEM、XRD與TEM 等分析,以觀察觸媒表面型態(morphology)與觸媒特性,與實驗結果相互佐證。並根據實驗的結果找出一組最佳的操作條件,進而進行實驗室規模之焚化爐煙道氣污染物之研究。 研究結果指出,以含浸法製備之觸媒於500℃鍛燒下,具有良好的銳鈦礦晶體結構;另外在活性測試的部份,流量的增加,污染物之去除效果不受影響,所以本實驗選擇以200ml/min之流量可忽略質傳影響;濕度扮演重要的角色,當RH=56.8%時去除效率最高,主要因水氣是產生氫氧自由基的主要來源,但是過多之水氣可能與有機物競爭觸媒表面上的活性位置,因而抑制反應的進行;初使濃度對去除率之影響中得知,初使濃度的高低不會影響觸媒對有機物的催化能力,實驗使用之觸媒量適合催化200~250ppm之有機物,可藉由增加觸媒量提高對有機物之催化能力;此外再生的測試,觸媒可經由連續曝水及紫外光的照射,使觸媒恢復原有的活性,可再次利用。 在煙道氣的測試中,使用不同的載體(玻璃珠、石英砂)及不同的反應器(固定床、流體化床)互相做比較,其中以石英砂流體化床的效果最佳、玻璃珠之固定床效果次之、石英砂固定床效果最差,造成這些現象的主因為流體化時,觸媒與紫外光及污染物的接觸面積較固定床大,使得效果佳,而玻璃珠之透光性比石英砂好,所以玻璃珠之固定床效果比石英砂固定床去除效果佳。
This study aims to investigate influence factors on photocatalytic decomposition of organic compounds by UV/TiO2 process. A pilot-scaled incinerator was studied to obtain optimum operating conditions. FE-SEM, TEM, and XRD results of catalytic morphology were also conducted for understanding the mainly reaction mechanisms. These results indicated that a well structured anatase TiO2 was obtained by impregnation method under 500℃. Flow rate, in the activity test, could be neglected for mass transfer effects. As a matter of fact, relative humidity played the most important role in this reaction. The highest removal efficiency was obtained while relative humidify of 56.8%. Water molecules are sources of ; however, excessive water molecules could inhibit reactions by competing activity sites with organic containments. In the regeneration test, photocatalyst could be reactivated through a running water vapor with UV light illumination process. In the test of flue gas, the catalyst could undergo photocatalyst reaction to kinds of organic containments at the same time. Among all types of reactors, fluidized bed was more effective than fixed bed was. Quartz sand was sufficient material as fluidized bed supporters. This result suggested that a greater contact area in the fluidized bed lead a more significant reaction.
URI: http://hdl.handle.net/11455/5350
其他識別: U0005-2806200712472300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806200712472300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.