請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5352
標題: 以TiO2/PAC複合式光觸媒降解偶氮染料之研究
The study of azo-dye degradation by TiO2/PAC complexed photocatalyst
作者: 吳珮怡
Wu, Pei-yi
關鍵字: photocatalytic
光催化
TiO2
powdered activated carbon
azo-dye
二氧化鈦
粉末狀活性碳
偶氮染料
出版社: 環境工程學系所
引用: 邱永亮譯,染料之合成與特性,徐氏基金會出版(1975)。 邱永亮、魏盛德合譯,染色化學,徐氏基金會出版(1975)。 胡振國譯,半導體元件-物理與技術,全華圖書公司(1989)。 高濂、鄭珊、張青紅著,奈米光觸媒,五南圖書公司(2004)。 謝芳生、劉濱達譯,微電子學,東華書局(1986)。 淡江大學土木研究所,事業廢水特性調查與分類,行政院環境保護署委託研究報告(1993)。 經濟部環保署工業減廢聯合輔導小組,工業減廢技術手冊1-染整工業(1993)。 經濟部環保署工業減廢聯合輔導小組,工業減廢技術手冊4-染整工業(1995)。 林俊輝,德國禁用特定偶氮染料之相關產品對我國產業之影響及因應之道,工業簡訊第二十五卷第十二期,第119-126頁(1995)。 李俊德、張皓,紡織廢水臭氧脫色處理之研究,第一屆廢水處理技術研討會論文集,第5-14頁(1976)。 黃全億,臭氧在捲器攪拌槽中對染料水溶液之脫色及臭氧利用率之研究,碩士論文,國立台灣工業技術學院化工所(1994)。 葉志揚,以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定,碩士論文,國立台灣大學化學工程研究所(1999)。 廖偉登、李炳楠、樓基中,紫外光/二氧化鈦程序處理甲基藍脫色之研究,第二十二屆廢水處理技術研討會論文集,第298-303頁(1997)。 盧明俊,毒性化學物質經二氧化鈦催化之光氧化反應,博士論文,國立交通大學土木工程研究所(1993)。 盧明俊、阮國棟、陳重男,二氧化鈦薄膜催化光分解二氯松之研究,第十六屆廢水處理技術研討會論文集,第807頁(1991)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所(2000)。 Arana, J., J. M. Dofia-Rodriguez, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon, and J. A. Navio, “TiO2 Activeation by Using Activated Carbon a Support Part I. Surface Characterization and Decantability Study,” Applied Catalysis B: Environmental, Vol. 44, pp. 161-172 (2003). Bhattacharyya, A., S. Kawi, and M. B. Ray, “Photocatalytic Degradation of Orange Ⅱ by TiO2 Catalysts Supported on Adsorbents,” Catalysis Today, Vol. 98, pp.431-439 (2004). Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon,” Journal of Molecular Catalysis A:Chemical, Vol. 228, pp. 293-298 (2005). Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?,” Journal of Catalysis, Vol.66, pp. 383-390 (1980). Daneshvar, N., D. Salari, and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2,” Journal of Photochemistry and Pohotbiology A:Chemistry, Vol. 162, pp. 317-322 (2004). Davis, A. P. and C. P. Huang, “The Removal of Substituted Phenols by Photocatalytic Oxidation Process with Cadmium Sulfide,” Water Research, Vol. 24, pp. 543-550 (1990). Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu, “Photocatalytic Decolorization of Wastewater Dyes,” Water Environment Research, Vol. 66, P. 50-53 (1994). Doede, C. M. and C. A. Walker, “Photochemical Engineering,” Chemical Engineering journal,Vol. 62, pp. 159-178 (1955). Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, Vol. 93, pp. 341-357 (1993). Fu, P., Y. Luan and X. Dai, “Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity,” Journal of Molecular Catalysis A: Chemical, Vol. 221, pp. 81-88 (2004). Fukahori, S., H. Ichiura, T. Kitaoka, and H. Tanaka, “Capturing of Bisphenol A Photodecomposition Intermediates by Composite TiO2-Zeolite Sheets,” Applied Catalysis B: Environmental, Vol. 46, pp. 453-462 (2003). Gao, Y. and H. Liu, “Preparation and Catalytic Property Study of A Novel Kind of Suspended Photocatalyst of TiO2-Activated Carbon Immobilized on Silicone Rubber Film,” Materials Chemistry and Physics, Vol. 92, pp. 604-608 (2005). Ghosh, M. M. and F. E. Woodard, “Treatability Studies and Design Consideration for a Textile Mill Wastewater,” Proceeding of the 32th Industrial Waste Conference, Purdue University, pp 663-673 (1977). Gomathi, D. L. and G. M. Krishnaiah, “Photocatalytic Degradation of P-Amion-Azo-Benzene and P-Hydroxy-Azo-Benzene Using Various Heattreated TiO2 as the Photocatalyst,” Journal of Photochemistry and Photobiology, Vol. 121, pp. 141-145 (1999). Gregg, S. J. and K. S. W. Sing, Adsorption Surface Area and Porosity, Academic Press, London (1982). Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews,Vol. 95, pp. 69-75 (1995). Jiann, M. W., H. S. Huang, and C. D. Livengood, “Ultraviolet Destruction of Chlorinated Compounds in Aqueous Solution,” Environmental Progess, Vol.11, pp. 195-201 (1992). Korman, C., D. W. Bahnemann, and M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand,” Environmental Science and Technol, Vol. 22, pp. 798-806 (1988). Lars, A. and M. Alison,“Surface Vacancies in CVD Diamond,” Diamond and Related Materials, Vol. 7, pp.261-265 (1998). Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, Vol. 89, pp. 95-100 (1982). Li, Y., X. Li, J. Li and J. Yin, “Photocatalytic Degradation of Methyl Orange by TiO2-Coated Activated Carbon and Kinetic Study,” Water Research, Vol. 40, pp. 1119-1126 (2006). Little, L. W. and J. C. Lamb, “Acute Toxicity of 46 Selected Dyes to the Fathead Minnow, Pimephales Promeals,” Proceedings of the 29th Industrial Waste Conference, Purdue University, pp 525-533 (1974). Livage, J., S. Doeuff, M. Henry and C. Sanchez, “Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid,” Journal of Non-Crystalline Solids, Vol. 89, pp. 206-216 (1987). Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry,” Macmillan Publishing Co. Inc., New York (1974). Muruhanandham, M. and M. Swaminathan, “Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process,” Dyes and Pigments, Vol. 68, pp.133-142 (2006). Nilsson, R., R. Nordlinder, U. Wass, B. Meding and L.Belin, “Asthma, Rhinitis, and Dermatitis in Workers Exposed to Reactive Dyes,” British Journalof Industrial Medicine, Vol. 50, pp. 65-70 (1993). Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of Chemical Society of Japen, Vol. 58, pp. 2015-2022 (1985). Ollis, D. F., E. Pelizzetti and N. Serpone, “Photocatalyzed destruction of Water Contaminants,” Environmental Science and Technol, Vol. 25, pp.1522-1529 (1991). Prengle, H. W. and C. E. Mauk, “New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection,” AIChE Sym. Ser., Vol. 74, pp.228-244 (1978). Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis,” Gratzel, M., Ed., Academic Press, New York (1983). Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemical, pp. 829-832 (1990). Skoog, D. A. and D. M. West, “Fundamentals of Analytical Chemistry,” fourth Ed., CBS College Publiching (1982). Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, Vol. 65, pp. 665-673 (1993). Tang, W. Z. and H. An, “UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,” Chemosphere, Vol. 31, No. 9, pp. 4150-4170 (1995). Tang, W. Z. and R. Z. Chen, “Decolorization Kinetic and Mechanisms of Commercial Dyes by H2O2/Iron Powder System,” Chemosphere, Vol. 32, pp. 947-958 (1995). Terabe, K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide,” Journal Materials Science, Vol. 29, pp. 1617-1622 (1994). Torimoto, T., Y. Okawa, N. Takeda and H. Yoneyama, “Effect of Activated Carbon Content in TiO2-Loaded Activated Carbon on Photodegradation Behaviors of Dichloromethane,” Journal of Photochemistry and Pohotbiology A:Chemistry, Vol. 103, pp. 153-157 (1997). Tryba, B., A. W. Morawski and M. Inagaki, “Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water,” Applied Catalysis B: Environmental, Vol. 41, pp. 427-433 (2003). Turner, J. C. R., “An Introduction to the Theory of Catalytic Reactors,” Catalysis Science and Technology, Vol. 1, pp. 43-86 (1981). Wold, A., “Photocatalytic Properties of TiO2,” Chemistry of Materials, Vo1. 5, pp. 280-283 (1993). Yuan, R., R. Guan and J. Zheng, “Effect of the Pore Size of TiO2 Loaded Activated Carbon Giber on Its Photocatalytic Activity,” Scripta Materialia, Vol 52, pp.1329-1334 (2005). Yuan, R., J. Zheng, R. Guan and Y. Zhao, “Surface Characteristics and Photocatalytic Activity of TiO2 Loaded on Activated Carbon Fibers,” Colloids and Surfaces A:Physicochemical Engineering Aspects, Vol. 254, pp. 131-136 (2005). Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters,” Environmental Science and Technol, Vol.18, pp. 358A-371A (1984). Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science and Technol, Vol. 22, pp. 256-257 (1988). Zhang, X., M. Zhou and L. Lei, “Preparation of An Ag-TiO2 Photocatalyst Coated on Activated Carbon by MOCVD,” Materials Chemistry and Physics, Vol. 91, pp. 73-79 (2005).
摘要: 本研究以溶液凝膠法製備TiO2光觸媒粉體並與粉末狀活性碳(Powder Activated Carbon, PAC)結合成複合式光觸媒(TiO2/PAC),利用懸浮批次式反應器光催化處理偶氮染料Acid Yellow 17,做為觸媒之光活性測試。探討pH值、複合式觸媒混合比例、初始染料濃度等操作參數對於Acid Yellow 17分解之影響,並進一步求得Acid Yellow 17分解之反應動力模式及反應速率常數。 由FE-SEM、XRD及BET等表面分析結果可知,本研究製備之TiO2光觸媒,顆粒大小約為20 nm,結晶構造為Anatase晶型,且與PAC結合後,並不影響TiO2之特性。 藉由PAC之吸附能力可促進染料擴散至TiO2表面而分解,利用反應結束後之脫附程序,將吸附於觸媒表面的染料脫附至水溶液中,以釐清實際光催化之降解量。結果顯示,複合式光催媒之光活性確實比單獨TiO2光觸媒佳。 複合式觸媒於酸性系統比中性或鹼性系統有較佳之光活性;在固定的觸媒總量下,複合比例以PT60(60 wt.%TiO2-40 wt.%PAC)有最佳的光催化效果;而在染料初始濃度25 mg/L至100 mg/L間,以初始濃度75 mg/L有最大的降解量。各批次之光催化反應皆可以簡化之Langmuir-Hinshelwood擬ㄧ階反應動力模式模擬。
TiO2-loaded powdered activated carbon (TiO2/PAC) was prepared by Sol-Gel method, and its photocatalytic performance on the photodegradation of azo-dye Acid Yellow 17 was investigated. The effects of some parameters such as pH, proportion of photocatalyst and initial concentration of dye were also examined. The kinetics and reaction rate of Acid Yellow 17 photodegradation were analyzed. Based on the surface analysis of FE-SEM, XRD and BET, the results showed that the grain size of TiO2 was about 20 nm and the crystal structure was mainly in anatase form. After PAC was coated with TiO2, the characteristics of TiO2 photocatalyst were not altered either. The adsorption ability of PAC could enhance dye diffused to the TiO2 surface and decompleted. The contribution of photodegradation was determined by desorption process, after the photocatalytic reaction. In the results, TiO2/PAC has a better photoactivity than TiO2. In the acidic solution, better photodegradation efficiency was achieved than in the neutral or alkaline solution. As far as the component proportion of photocatalyst is concerned, PT60 (60 wt.%TiO2-40 wt.% PAC) has the best efficiency. In the range of dye concentration from 25 mg/L to 100 mg/L, 75 mg/L showed the maximum photodegradation. The kinetic behavior would be described with a simplified Langmuir-Hinshelwood model.
URI: http://hdl.handle.net/11455/5352
其他識別: U0005-2806200714371100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806200714371100
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。