請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5354
標題: 多壁奈米碳管結合光觸媒之複合材料去除氣相丙酮污染物之研究
A study on Removal of acetone vapors from air streams by CNTs/TiO2 nanocomposites
作者: 蔡逸傑
Tsai, Yi-Jie
關鍵字: nanocomposites
photo degradation
出版社: 環境工程學系所
引用: 洪昭南等(1999),”以化學氣相沉積法成長半導體薄膜”,化工技術,Vol. 7, No. 1, pp. 190-204。 巫玉娟,(2005)”活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究”,國立中山大學環境工程研究所碩士論文。 林敏男(1999),“半導體業作業環境中揮發性有機化合物氣相層析質譜 儀分析方法建立”,國立清華大學原子科學系碩士論文。 Aguado, M. A., Anderson, M. A. (1993), “Degradation of Formic Acid over Semiconducting Membranes Supported on Glass:Effects of Structure and Electronic Doping”,Solar Energy Mat. Solar Cell ,Vol.28, pp.345-356. Ait-Ichou I., Formenti M., Pommier B., and Teichner J.( 1985), “Photocatalytic dehydrogenation of isopropanol on Pt/TiO2 catalysts, Journal of Catalysis Vol.91, pp.293-307. Araña J., Herrera Melián J.A., Doña Rodr´ýguez J.M., González D´ýaz O., Viera A., Pérez Peña J., Marrero Sosa P.M., and Espino Jiménez V. (2002), “TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater”, Catalysis Today Vol.76, pp. 279–289. Bacsa, R.R., Kiwi, J. (1998), “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid”, Applied Catalysis B: Environmental , Vol.16,( 1), pp. 19-29. Brinkley D., and Engel T.(2000), “Evidence for structure sensitivity in the activated and photocatalytic dehydrogenation of 2-Propanol on TiO2”, J. Phys. Chem. B Vol.104, pp.9836-9841. Clark, M. M. (1996),”Transport Modeling for Environmental Engineering and Scientists”, John Wiley & Sons, Inc., U.S.A. Cot, F., Larbot, A., Nabias, G. and Cot, L. (1998), “Preparation andCharacterization of Colloidal Solution Derived Crystallized TitaniaPowder’’, Journal of the European Ceramic Society, Vol.18,pp.2175-2181. Diebold, U. (2003), “The Surface Science of Titanium Dioxide,” Surf. Sci. Rep., Vol. 48,pp.53-239. Fujishima, A. and Honda, K. (1972), “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol.238, pp.37. Fukahori S., Ichiura H., Kitaoka T., and Tanaka H. (2003), “Photo catalytic decomposition of Bisphenol A in water using composite TiO2-zeolitesheets prepared by a papermaking technique”, EnvironmentalScience and Technology Vol.37(5), pp.1048-1051. Gu Z.R., Chen A.P., Dai Z.M., and Gu H.C.(2000), “Mechanism of mutual enhancing ability of purification between photocatalysis agent and active carbon on air purification sieve”, Chemistry and Industry of Forest Products Vol.20(1), pp.6-10. Hashimoto, K., Wasada, K.; Osaki, M., Shono, E.; Adachi, K., Toukai, N. and Kera, Y. (2001), “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, Vol.30, pp.429-436. Herrmann, J. M. (1999), Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today Vol.53,pp.115-129. Hofstadler, K., Bauer, R., Novalic, S. and Heisler, G. (1994), “Now Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fased-Silica Glass Fiber”, Environmetnal Science and Technology, Vol.28,pp.670-674. Hone, J., Zettl, A. and Whitney, M. (1999),“Thermal conductivity of single-walled carbon Nanotubes” Synthetic Metals, Vol. 103, pp.2498-2499. Hu, Z.S., Dong, J.X. and Chen G.X. (1999), “Preparation of nanometer titanium oxide with n-butanol supercritical drying’’, Powder Technology, Vol.101,pp.205-210. Hyun-Seok Son, So-Jin Lee, Il-Hyoung Cho, Kyung-Duk Zoh (2004),” Kinetics and mechanism of TNT degradation in TiO2 photocatalysis” Chemosphere Vol.57,pp.309–317. Ibusuki T., and Takeuchi K.(1994), “Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis”, Journal of Molecular Catalysis Vol. 88, pp.93-102. Ichiura H., Kitaoka T., and Tanaka H. (2003), “Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique” Chemosphere Vol.50,pp.79-83. Iijima, S.,(1991) “Helical microtubules of graphitic carbon” Nature, Vol. 354, pp.56. Ivanda, M., Music, S., Popovic, S.,Gotic, M., XRD(1999),”Raman and FT-IR spectroscopic observations of nano size TiO2 synthesized by the sol-gel method based on an esterification reaction”. Journal of Molecular Structure, Vol.480-481, pp. 645. Jalava, J.P., Heikkila, L.; Hovi, O., Laiho, R.; Hiltunen, E., Hakanen,A. and Harna, H. (1998), “Structural Investigation of Hydrous TiO2 Precipitatesand Their Aging Products by X-ray Diffraction, Atomic ForceMicroscopy, and Transmission Electron Microscopy’’, IndustrialEngineering Chemistry Research,Vol.37,pp.1317-1323. Katoh R., Tasaka Y., Sekreta E., Yumura M., Ikazaki F., Kakudate Y. and Fujiwara S. 1999) “ Sonochemical production of a carbon nanotube” Ultrasonics Sonochemistry Vol. 6, pp.185-187. Khan, F. I., Ghoshal, A. K., (2000), “ Removal of volatile organic compounds form polluted air”, Journal of Loss Prevention in the Process Industries, Vol.13, pp.527-545. Kim E.K., Son M.H., Min S.K., Han Y.K. and Yom S.S. (1997), “Growth of highly oriented TiO2 thin films on InP(100) substrates by metalorganic chemical vapor deposition ” J. Cryst. Growth Vol.170,pp. 803-807. Li, Y., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B. (2003), “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solution by multiwalled carbon nanotubes.” Carbon Vol.41,pp. 2787. Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. (2003), “Adsorption of fluoride from water by aligned carbon nanotubes.” Materials Rresearch Bulletin Vol.38,pp. 469. Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B. (2002), “Lead adsorption on carbon nanotubes.” Chemical Physics Letters Vol.357,pp.263. Lu, C., Chiu, H. (2006), “Adsorption of zinc (II) from water with purified Carbon nanotubes” Chemical Engineering Science Vol. 61 pp.1134. Lu, C., Chung, Y. L., Chang, K. F. (2005), “Adsorption of trihalomethanes from water with carbon nanotubes.” Water Research Vol. 39, pp.1183. Matsumoto, Y., Shimizu, T., Toyoda, A. and Sato E.I.(1982), “New Preparation Method for Doped Polycrystalline TiO2 and Nb2O5 and Their Photoelectrochemical Properties”, Journal of Physical Chemistry. Vol.86 ,pp.3581~3585. Mills, A. and Hunte, S.L. (1997), “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology, A:Chemistry Vol.108(1),pp. 1-35. Music, S. (1997), “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure”, Materials Science and Engineering: B. Vol.47, pp. 33. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., Jia, Z. (2003). “Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes.” Chemical Physics Letters Vol.376, pp. 154. Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P. (2000) “ Molecular dynamics simulation of mechanical, vibrational andelectronic properties of carbon nanotubes ” Computational Materials Science,Vol. 17, pp. 352-355. Rappaport, S. M., Selvin, S., Waster, M. A. (1987), “Exposures to hydrocarbon components of gasoline in the petroleum industry.” Applied Industrial Hygiene vol.2,pp. 148. Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S. and Chen, B. (1993) “Radial deformation of carbon nanotubes by Van- der - Waals forces” Nature, Vol. 364,pp. 514. Ruthven D. M. (1984) ,“Principle of Adsorption and adsorption Process, ”John Willey and Sons. Sakai, H., Kawahara, H., Shimazaki, M.,Abe, M. (1998),” Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensations Reaction in the Inner Aqueous Phase of Reversed Micelles”,Effect of Alcohol Addition. Langmuir,.Vol.14, pp. 2208. Serpone N. (1997), “Relative photonic efficiencies and quantum yield in heterogeneous photocatalysis”, J. Photochem. Photobio. A:Chem. Vol.104, pp.1-12. Takeda N., Iwata N., Torimoto T., and Yoneyama1 H.(1998), “Influence of carbon black as an adsorbent used in tio2 photocatalyst films on photodegradation behaviors of propyzamide”, Journal of Catalysis Vol.177,pp. 240–246. Thess A., Nikolaev P., Da iH., Xu C., Rinzler A. G., Colbert D. T., Scuseria G. E. and Smalley R. E. (1996) “Crystalline Ropes of Metallic CarbonNanotubes ”Science, Vol. 273, pp. 483-487. Tsumura T., Kojitani N., Umemura H., Toyoda M., and Inagaki M. (2002), “Composites between photoactive anatase-type TiO2 and adsorptive carbon”, Applied Surface Science Vol.196, pp. 429-436. Uchida H., Itoh S., and Yoneyama H. (1993), “Photocatalytic decomposition of propyzamide using TiO2 supported in actived carbon”, Chemistry Letters,pp.1995-1998. Vorontsov A. V., Savinov E. N., Barannik G. B., Troitsky V. N., and Parmon V. N. (1997), “Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2”, Catalysis Today Vol.39 ,pp. 207-218. Weber, W. J. and Digiano, F. A. (1996), “ Process Dynamics in Environmental Systems,” John wiley & Sons, Inc. , New York. Wu, X. B., Chen, P., Lin, J., Tan, K. L. (2000), “Hydrogen uptake by carbon nanotubes.” International Journal of hydrogen energy Vol.25,pp. 261. Yamashita H., Harada M., and Tanil A. et al. (2000), “Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purificationof water”, Catalysis Today Vol.63 , pp.63-69. Yamazaki-Nishida, S., Nagano, K.J., Cervera-March, S. and Anderson M.A. (1993), “Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets’’, Journal Photochemistry Photobiology A:Chemistry, Vol.70,pp.95-99. Ying Yu , Jimmy C., Yu, Jia-Guo Yu , Yuk-Chun Kwok , Yan-Ke Che , Jin-Cai Zhao , Lu Ding , Wei-Kun Ge , Po-Keung Wong, (2005), “Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes”, Applied Catalysis A: Vol 289 ,pp.186–196. Zhang X.R., and Yang P. (2002) , “Study on preparation of TiO2-SiO2/beads andit’s photocatalytic properties by sol-gel technique”, Acta Energiae Solaris Sinica Vol.23(2),pp. 150-153. Zhang, Y., Shi, Z., Gu, Z., Iijima, S. (2000)."Structure modification of single-wall carbon nanotubes" CarbonVol. 38,pp. 2055. Zhao, J., Buldum, A., Han, J., Lu, J. P. (2002). "Gas molecule adsorption in carbon nanotubes and nanotube bundles." Nanotechnology Vol.13,pp.195.
摘要: 本研究之主要目的為瞭解商用多壁奈米碳管結合TiO2光觸媒之複合材料於空氣污染物(Acetone)吸附及光降解處理技術應用上之潛能。本實驗將分別製備多壁奈米碳管含量為0~40%之CNTs/TiO2奈米複合材料,並進行XRD、BET、TGA、TEM、Raman等特性分析並討論其中之特性差異,並且進行等溫吸附實驗及光降解實驗,討論其吸附及光解效率,實驗結果顯示由高解析穿透式電子顯微鏡(HRTEM)所得之影像可直接觀察得,10%以上CNTs比例之複合材料二氧化鈦可較均勻的分散於多壁奈米碳管上,其粒徑大小約為10~20nm;由總比表面積分析儀(BET)可得,原始多壁奈米碳管之比表面積及總孔洞體積分別約為393 m2 g-1 及0.9086 cm3 g-1,研究中發現經過增加多壁奈米碳管於複合材料中之比例可提升複合材料之比表面積與孔隙體積。由拉曼光譜分析可看出多壁奈米碳管之G-band位於1565cm-1,而隨者CNTs比例漸少G-band 有向右偏移之趨勢;由TGA結果顯示奈米碳管約在500℃時開始出現重量損失,且其在750℃鍛燒後之殘餘重量比約為5%;並進行等溫吸附和光降解之實驗,等溫吸附實驗顯示複合材料中添加CNTs可有效增加複合材料之吸附能力,而由光降解實驗得知多壁奈米碳管含量為10%之複合材料能兼備吸附和光降解之效能,並發現其光催化速率優於10%含量之單壁奈米碳管、沸石、活性碳之複合材料,且在直接光催化實驗中,複合材料有較優於純TiO2知去除效率。而在25℃有較佳的光催化效率,而其光催化速率常數會隨著相對溼度的增加而下降。
In this study student try to combine the advantage of CNTs and TiO2 by sol-gel method.And to study the characterization properties of nanocomposites with various CNTs containing ratios of 0~40%. From the transmission electron microscopy (TEM) images displayed that the TiO2 particles were uniformly coated on the CNTs surface and the CNTs appear in the composite can make the TiO2 particles well disperse. The BET result shows that the CNTs contain can efficiently increase the surface aera and pore volum of composite. The X-ray diffraction (XRD) analysis showed that the TiO2 on CNTs surface was anatase crystallize phase. From the Ramam result the D band of CNTs in the composite shift to right side with the MWCNT contained ratio decreasing and the ID/IG ratio increasing with MWCNT contained ratio decreasing. The TGA resule shows that the gasification temperature of CNTs is about 500℃ that prove the CNTs is suitable supporter for composite. And the 10% CNTs containing nanocomposites show the best performance for degrading acetone vapor from air streams, and its photo degradation rate constant is better than 10% SWCNTs、PAC、Zeolite containing composites. And the removal efficiency about opening the UV light at beging of 10% CNTs containing nanocomposites is better than pure TiO2.And at 25℃ can get the best degradation rate constant. From the humidity effect experiment result, the degradation rate constant decreasing with increasing the relate humidity.
URI: http://hdl.handle.net/11455/5354
其他識別: U0005-2906200717202800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906200717202800


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。