Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5358
標題: 現址化學氧化法氧化劑過錳酸鹽、過氧化氫及過硫酸鹽對土壤氧化劑需求量影響差異性之探討
Influences of ISCO oxidant permanganate, peroxide, and persulfate on soil oxidant demand
作者: 林毓泠
Lin, Yu-Ling
關鍵字: In situ chemical oxidation
現址化學氧化法
Persulfate
Peroxide
Permanaganate
Soil oxiant demand
過硫酸鹽
過氧化氫
過錳酸鹽
土壤氧化劑需求量
出版社: 環境工程學系所
引用: 中文參考文獻 丁志華, 游璨瑋, 戴寶通, 朝春光, 2001. 田口實驗計畫法簡介(II). 毫微米通訊 8, pp. 22-37. 王子欣, 2006. 常溫下過硫酸鹽氧化三氯乙烯之研究. 國立中興大學環境工程學系碩士論文, 台中市. 王世冠, 1998. 傅氏紅外光譜在環境分析上之應用. 環檢雙月刊, 第19期, 行政院環保署環檢所. 李輝煌, 2000. 田口方法品質設計的原理與實務. 高立出版社, 台北市. 林佩雲, 2005. 水中常見之陰離子對過硫酸鹽熱催化氧化三氯乙烯的影響. 國立成功大學環境工程學系碩士論文, 台南市. 席行正, 賴美君, 2004. 淺談土壤污染與整治復育技術. 南區毒災應變諮詢中心簡訊, pp. 6-12. 高志明, 黃昆德, 黃文彥, 陳敬遠, 蔡在唐, 邱炳華, 2006. 於酸性環境下除去含氯有機物且能抑制二氧化錳生成的高錳酸鉀氧化法. 國立中山大學, 中華民國專利. 高雄市環保局, 2007. 土壤及地下水污染整治技術介紹, 土壤及地下水污染整治技術網, http://depweb.ksepb.gov.tw/2/toxic/groundwater/p2.html. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 環境保護協會簡訊, pp. 13-20. 梁書豪, 2006. 以Fenton-like氧化處理受燃料油污染之土壤. 國立中山大學環境工程學系碩士論文, 高雄市. 黃秋芬, 2006. 環糊精對鐵活化過硫酸鹽氧化氯化有機溶劑影響之探討. 國立中興大學環境工程學系碩士論文, 台中市. 黃益助, 黃順義, 翁義雄, 2004. Tween80 加強過錳酸鉀降解三氯乙烯之二維砂箱模型實驗. 第二屆土壤及地下水研討會. 中華民國環境工程學會, 成功大學, 台南市. 黃鈺婷, 2004. 使用模擬退火-基因演算法結合部分因子設計法求解全域最佳化問題. 立德管理學院應用資訊研究所碩士論文, 台南市. 經濟部工業局, 2006. 鋼鐵冶鍊業土壤及地下水污染預防與整治技術手冊. 戴金琪, 2003. 以反應曲面方法改善銅導線晶圓封裝之銲線製程問題. 元智大學工業工程與管理學系碩士論文, 桃園縣. 環檢所, 1994. 土壤中陽離子交換容量-醋酸鈉法 (NIEA S202.60A). 土壤檢測方法. 環檢所, 1998. 沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法 (NIEA R355.00C) 廢棄物檢測方法. 環檢所, 2002. 土壤水分含量測定方法-重量法 (NIEA S280.61C). 土壤檢測方法. 環檢所, 2005a. 土壤中酸鹼值測定方法 (NIEA S410.61C) 土壤檢測方法. 環檢所, 2005b. 水中總菌落數檢測方法-塗抹法 (NIEA E203.54B) 環境生物檢測方法. 蘇惠靖, 2003. 以萃取法復育受重金屬污染土壤之可行性評估. 國立屏東科技大學環境工程與科學系碩士論文, 屏東縣. 英文參考文獻 Allen, S.A., Reardon, K.F., 2000. Remediation of contaminated soils by combined chemical and biological treatments. Battelle Press. Banerjee, M., Konar, R.S., 1984. Comment on the paper "Polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system". J. Polym. Sci.: Polym. Chem. 22, 1193-1195. Barcelona, M.J., Holm, T.R., 1991. Oxidation-reduction capacities of aquifer solids. Environ. Sci. Technol 25, 1565-1572. Berlin, A.A., 1986. Kinetics of radical-chain decomposition of persulfate in aqueous solutions in organic compounds. Kinet. Catal. 27, 34-39. Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. The Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. Buckman, H.O., Brady, N.C., 1960. The nature and properties of soils. Collier-Macmillan Limited, London. Conrad, S.H., Glass, R.J., Peplinski, W.J., 2002. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. Journal of Contaminant Hydrology 58, 13-49. Cox, R.J., Peterson, H.L., Young, J., Cusik, C., Espinoza, E.O., 2000. The forensic analysis of soil organic by FTIR. Forensic Science International 108, 107-116. Crimi, M.L., Siegrist, R.L., 2003. Geochemical effects on metals following permanganate oxidation of DNAPLs. Ground Water 41. Dahmani, M.A., Huang, K., Hoag, G.E., 2006. Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA Superfund Innovative Technology Evaluation Program). Water, Air, & Soil Pollution: Focus 6, 127-141. Dai, Q., Reitsma, S., 2004. Kinetic study of permanganate oxidation of tetrachloroethylene at a high pH under acidic conditions. Remediation Journal 14, 67-79. Day, R.A., Underwood, A.L., 1986. Quantitative analysis, 5th ed. Prentice-Hall, Englewood Cliffs, N.J. Dogliotti, L., Hayon, E., 1967. Flash phtolysis of persulfate ions in aqueous solutions: Study of the sulfate and ozonide radical anions. J. Phy. Chem. 71, 2511-2516. Domenico, P.A., Schwartz, F.W., 1990. Physical and chemical hydrogeology. John Wiley & Sons, Inc, New York. Dorfman, L.M., Adams, G.E., 1973. Reactivity of the hydroxyl radical. National Bureau of Standards. Droste, E.X., Marley, M.C., Parikh, J.M., Lee, A.M., 2002. Observed enhanced reductive dechlorination after in situ chemical oxidation pilot test. The Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. Fetter, C.W., 1999. Contaminant hydrogeology. Macmillan Pub. Co., New York. Gates-Anderson, D.D., Siegrist, R.L., 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. Journal of Environmental Engineering 127, 337-347. Gee, G.W., Bauder, J.W., 1986. Partical-size Analysis. In: Klute, A., Canvpbell, G.S., Nielsen, D.R., Jackson, R.D., Mortland, M.M. (Eds.). Methods of Soil Analysis-Part 1. American Society of Agronomy, Inc., Soil Science Society of America, Inc, Madison, Wisconsin, USA, pp. 404-408. Germida, J.J., 1993. Cultural methods for soil microorganisms. In: Carter, M.R. (Ed.). Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, Florida Haag, W.R., Yao, C.C.D., 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26, 1005-1013. Hartog, N., Griffioen, J., van der Weijden, C.H., 2002. Distribution and Reactivity of O2-Reducing Components in Sediments from a Layered Aquifer. Environ. Sci. Technol. 36, 2338-2344. Haselow, J.S., Siegrist, R.L., Crimi, M., Jarosch, T., 2003. Estimating the total oxidant demand for in situ chemical oxidation design. Remediation Journal 13, 5-16. Hoag, G.E., Chheda, P.V., Woody, B.A., Dobbs, G.M., 1998. Chemical oxidation of volatile organic compounds. United Technologies Corporation, University of Connecticut, USA. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. Huang, C.P., Dong, C.D., Tang, Z.M., 1995. Advanced chemical oxidation: It''s present role and potentail future in hazardous waste treatment. Chemical Engineering Progress December Issue, 62-66. Huang, K.-C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49, 413-420. Huling, S.G., Pivetz, B.E., 2006. In-situ chemical oxidation (EPA/600/R-06/072). In: USEPA (Ed.). Kang, N., Hua, I., Rao, P.S.C., 2004. Production and characterization of encapsulated potassium permanganate for sustained release as an in situ oxidant. Ind. Eng. Chem. Res. 43, 5187-5193. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., 1995. Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts. Russian Journal of general chemistry 65, Part 2. Kiss-Eross, K., 1976. Analytical infrared spectroscopy. Amsterdam, Elsevier. Kolthoff, I.M., Belcher, R., 1957. Titration methods: oxidation-reduction reactions Volumetric Analysis. John Wiely & Sons, Inc, New York, pp. 287-291. Kolthoff, I.M., Medalia, A.I., Raaen, H.P., 1951. The reaction between ferrous iron and persulfate. IV. Reaction with potassium persulfate. J. Am. Chem. Soc. 73, 1733-1739. Kolthoff, I.M., Miller, I.K., 1951. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium. J. Am. Chem. Soc. 73, 3055-3059. Landa, A.S., Sipkema, E.M., Weijma, J., Beenackers, A.A., Dolfing, J., Janssen, D.B., 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol. 60, 3368-3374. Lenka, S., Dash, S.B., 1983. Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system. Journal of Macromolecular Science, Part A, 20, 397-407. Li, X.D., Schwartz, W., F., 2004. DNAPL remediation with in situ chemical oxidation using potassium permanganate: Part I. Mineralogy of Mn oxide and its dissolution in organic. Journal of Contaminant Hydrology 68, 39-53. Liang, C., 2002. Chemical oxidation of chlorinated solvents by sodium persulfate in aqueous and soil slurry system. Department of Civil and Environmental Engineering. University of Massachusetts Lowell, Lowell, Massachusetts. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2001. Kinetics of thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA). Conference on oxidation and reduction technologies for in-situ treatment of soil and groundwater, Niagara Falls, Ontario, Canada. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004b. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55, 1225-1233. Lipczynska-Kochany, E., Sprah, G., Harms, S., 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30, 9-20. Merck, 2007. 化學品資料庫 ChemDAT online, http://myurl.com.tw/ug86. Mertz, J.H., Waters, W.A., 1947. The mechanism of oxidation of alcohols with Fenton''s reagent discussion. Faraday Soc. 2, 179. Mumford, K.G., Lamarche, C.S., Thomson, N.R., 2004. Natural oxidant demand of aquifer materials using the push-pull technique. Journal of Environmental Engineering 130, 1139-1146. Mumford, K.G., Thomson, N.R., Allen-King, R.M., 2005. Bench-scale investigation of permanganate natural oxidant demand kinetics. Environ. Sci. Technol 39, 2835-2840. Nelson, M.D., Parker, B.L., Al, T.A., Cherry, J.A., Loomer, D., 2001. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer. Environ. Sci. Technol. 35, 1266-1275. Norman, R.O.C., Storey, P.M., West, P.R., 1970. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. J. Chem. Soc. B, 1087-1095. Oberle, D.W., Schroder, D.L., 2000. Design consideration for in-situ chemical oxidation. The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. Page, A.L., Miller, R.H., Keeney, D.R., 1982. Chemical and microbiological properties. 2nd ed. Methods of Soil Analysis-Part 2. American Society of Agronomy, Inc., Soil Science Society of America, Inc, Madison, Wisconsin, USA, pp. 571-572. Root, D.K., Lay, E.M., Block, P.A., Cutler, W.G., 2005. Investigation of chlorinated methanes treatibility using activated sodium persulfate. The First International Conference on Environmental Science and Technology, New Orleans, USA. Sahl, J., Munakata-Marr, J., 2006. The effects of in situ chemical oxidation on microbiological processes: A review. Remediation Journal, 57-70. Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T., Stickney, B., 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. Journal of Contaminant Hydrology 29, 205-224. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and practices of in situ chemical oxidation using permanganate. Battelle Press, Ohio, USA. Skarzewski, J., 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinines. Tetrahedron 40, 4997-5000. Skoog, D.A., Leary, J.J., 1992. Principles of instrumental analysis. Fort Worth, Saunders College. Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, 844-851. Thomson, N.R., Xu, X., 2005. Permanganate natural oxidant demand: Lessons learnt from a multi-site bench-scale study. The 4th International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Chicago, Illinois. Van Langeveld, A.D., Van der Gaast, S.J., Eisma, D., 1978. A comparison of the effectiveness of eight methods for the removal of organic matter from clay. Clays Clay Miner. 26, 361-364. Walling, C., 1975. Fenton''s reagent revisited. Accounts of Chemical Research 8, 125-131. Walling, C., Johnson, R.A., 1975. Fenton''s reagent. V. Hydroxylation and side-chain cleavage of aromatics. Journal Of The American Chemical Society 97, 363-367. Watts, R.J., Teel, A.L., 2005. Chemistry of modified Fenton''s reagent (catalyzed H2O2 propagations-CHP) for In situ soil and groundwater remediation. Journal of Environmental Engineering 131, 612-622. Watts, R.J., Udell, M.D., Rauch, P.A., 1990. Treatment of pentachlorophenol contaminated soil using Fenton''s reagent. Hazardous Waste & Hazardous Materials 7, 335-345. Xu, X., 2006. Interaction of chemical oxidants with aquifer materials. Ph. D thesis, Civil Engineering. The University of Waterloo, Waterloo, Ontario, Canada.
摘要: 現地化學氧化法(In situ chemical oxidation,ISCO)常使用的水溶性氧化劑為Fenton 試劑、高錳酸鹽(MnO4-)及過硫酸鹽(S2O82-)。由於大多數氧化劑不具選擇性,因此若欲使目標污染物達到良好的降解效率,必須考量目標污染物所需之氧化劑劑量、氧化劑本身自我降解量,以及與土壤中其他可氧化物質(oxidizable matter,OM)反應之消耗量,此三者綜合才是真正現地應用所需之氧化劑總量,而用以克服土壤中非目標OM之氧化劑量稱為土壤氧化劑需求量(soil oxidant demand,SOD)。本研究針對上述三種氧化劑,探討不同土壤特性及不同反應條件對SOD之影響,並以「田口氏直交表」(Taguchi’s orthogonal arrays)設計實驗以探討對SOD影響最甚之變因。 在未活化之氧化實驗組中,過硫酸鹽的使用會使土壤pH驟降,約介於2~4之間,而過硫酸鹽對土壤OM之氧化作用為一緩慢、溫和之反應,反應時間越長,對OM之降解越顯著;過氧化氫無論在何種條件下皆會完全降解,因而當使用過氧化氫作為ISCO氧化劑時,不宜以SOD做為估算氧化劑用量之指標,而由於過氧化氫在接觸土壤後將會迅速降解,因此對土壤pH之影響不明顯;過錳酸鹽對砂土OM之降解量與其他兩種氧化劑相似,但在坋土中,OM降解量可達原始OM之70%,遠高於其他兩種氧化劑,過錳酸鹽與土壤反應後會產生深褐色錳氧化物微粒,並提升pH値,尤其在坋土實驗中更為明顯,可能因過錳酸鹽之反應會消耗H+及產生OH-所致。在鐵活化之氧化實驗組中,過多之活化劑會加速過硫酸鹽及過氧化氫之降解,若在降解過程中,其所產生之硫酸根自由基或其他活性物種無法有效地與土壤中OM接觸,將造成SOD之高估。 在不同土水比對SOD之影響探討中,當較少之土壤存在時,其SOD越高,此因單位質量土壤所負荷之氧化劑增加所致。當探討土壤表面於氧化反應前後之變化,由掃描式電子顯微鏡(SEM)影像結果顯示過氧化氫、過錳酸鹽及鐵活化過氧化氫處理後之坋土其礦物結構形狀變得較為尖銳、破碎,尤以過錳酸鹽處理之土樣更為明顯。過錳酸鹽對土壤總有機碳(total organic carbon,TOC)之降解量在所有實驗組中最為顯著。總菌數分析結果顯示,較高濃度氧化劑殘留或pH偏低之土樣,其土壤微生物生長皆會被抑制。
Oxidants commonly used for the in situ chemical oxidation (ISCO) application include Fenton's reagent, permanganate (MnO4-), and persulfate (S2O82-). Due to the non-selective characteristics of oxidants, three aspects concerned for estimating ISCO oxidant dosage requirement for effective treatment of target contaminants must be considered: (i) the stoichiometric amount of oxidant for destroying the contaminant, (ii) the oxidant demand to meet with the consumption by natural soil oxidizable matters (OM) and (iii) the amount resulting from oxidant self-decomposition. It should be noted that the oxidant consumed by the background organic and inorganic components of the soil aquifer matrix is known as soil oxidant demand (SOD) of the treatment zone. This study explored the influences of ISCO oxidants, soil characteristics, and other operational variables including oxidant strength, activator concentration, pH and reaction time on SOD in two different soils (i.e., sand and silt). Taguchi's orthogonal arrays were used for the design of experimental setup. Experimental results reveals that the utilization of persulfate led to the drop of soil pH (e.g., 2~4). However, persulfate oxidation of the OM is a slow and mild reaction. The more destruction of OM with persulfate was resulted from the longer reaction time. For estimation of peroxide dosage based on the SOD value was avoided due to a rapid decomposition of peroxide in the soils. The change of soil pH in peroxide experiments was relatively minor. The reduction of sand OM by permanganate was similar to those by persulfate and peroxide. However, permanganate can oxidize approximately 70% silt OM that is much higher than those by the other two oxidants (i.e., 5~20%). Brown-color manganese oxide deposits were observed in the permanganate experiments (note: more noticeably for silt slurries) and the final soil pH became neutral due to the consumption of H+ ions. The Fe2+ activated persulfate and peroxide experiments suggested that excess Fe2+ may accelerate the decomposition of oxidants. Hence, SOD might be overestimated because oxidants do not diretly react with OM. In the different ratio of soil to water experiments, the results reveals that a lower soil/water ratio would result in a higher SOD value due to a high oxidant mass loading over less soils. Scanning electron microscope images of silt that was oxidized by peroxide, permanganate and activated peroxide exhibited the breaks of mineral structures. Among them the permanganate oxidation resulted in most significant altering of soil structure. Also, permanganate can degrade most of soil organic carbon in comparison to other oxidants. The total bacterial counts exhibited that high residual oxidant concentration and extremely low pH would inhibit the bacteria growth.
URI: http://hdl.handle.net/11455/5358
其他識別: U0005-2907200701245400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200701245400
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.