Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5393
標題: E-Fenton法結合透水性反應牆去除地下水中五氯酚之研究
Removal of Pentachlorophenol in Groundwater by E-Fenton Coupled with Permeable Reactive Barriers
作者: 洪琮博
Hung, Tsung-Po
關鍵字: PCP
五氯酚
Zero-valent iron
PRB
Groundwater
零價鐵
透水性反應牆
地下水
出版社: 環境工程學系所
引用: 王應然,五氯酚及其代謝產物四氯對苯二酚毒性作用之分子機轉,博士論文,國立台灣大學 (1995)。 行政院環境保護署,1998/6/24,環境基準表(1998)。<http://www.epa.gov.tw/main/index.asp>於2008/4/24 上網瀏覽。 行政院環境保護署,2001/11/21,地下水污染管制標準 (2001a)。<http://ww2.epa.gov.tw/SoilGW/page03/sites_info/company/Total.htm>於2008/4/24 上網瀏覽。 行政院環境保護署,2001/11/21,土壤污染管制標準 (2001b)。<http://ww2.epa.gov.tw/SoilGW/page03/sites_info/company/Total.htm>於2008/4/24 上網瀏覽。 行政院環境保護署,2003/11/26,放流水標準 (2003b)。<http://www.epa.gov.tw/main/index.asp>於2008/4/24 上網瀏覽。 行政院環境保護署,2003/3/19,全國已公告為土壤及地下水污染控制場址(工廠與非法棄置場部分) (2003a)。 <http://ww2.epa.gov.tw/soilgw/site1.asp>於2008/4/24 上網瀏覽。 行政院環境保護署,2003/4/8,毒理資料庫查詢 (2003c)。<http://ivy2.epa.gov.tw/toxic/prog/database1.asp>於2008/4/24 上網瀏覽。 行政院環境保護署,2006/12/14,有害事業廢棄物認定標準 (2006)。 < http://www.epa.gov.tw/main/index.asp>於2008/4/24 上網瀏覽。 行政院環境保護署,2008/4/24,全國已公告為土壤及地下水污染控制場址(2007)。<http://ww2.epa.gov.tw/soilgw/site1.asp >於2008/4/24 上網瀏覽。 阮國棟、陳啟仁,”天然衰減法”整治土壤及地下水污染之技術內涵與案例研究,工業污染防治,第71 期,第87-102頁 (1999)。 林財富、洪旭文,受污染場址現地化學處理方法介紹,工業污染防治,第72 期,第178-200頁 (1999)。 林財富,透水性反應牆之設計介紹,工業污染防治,第84 期,第117頁 (2002)。 林畢修平,環境中含氯有機污染源生物復育之可行性介紹,微生物與環境荷爾蒙研討會論文集,第66-84頁 (2000)。 高志明、陳谷汎、廖毓玲、李淑蕙,「以現地透水性反應牆整治污染之地下水」,環保月刊,3月號,第九期,第101-108頁,(2002)。 物質安全資料表 (2007),<http://www.iosh.gov.tw/data/f11/n533.htm>。 袁菁、翁誌煌、江姿幸,「零價鐵提昇電動力法處理四氯乙烯污染土壤之初步研究」,中華民國環境工程年會第十七屆廢棄物處理研討會(2002) 翁誌煌、林純玉,「利用零價鐵反應牆提昇電動力復育六價鉻污染黏土之研究」,中華民國環境工程年會第一屆土壤地下水研討會(2003)。 章日行、程淑芬、林佩君、鍾秉倫,「整合零價鐵與電動力法復育四氯乙烯污染土壤」,第一屆土壤及地下水處理技術研討會(2003) 國際癌症研究局,<http://www.iarc.fr/index.html>。 張碧芬,氯酚化合物在土壤中生物分解之研究,行政院國家科學委員會專題研究計畫成果報告 (1996)。 曾聖倫,貴金屬提高二氧化鈦對五氯酚光催化效應之研究,碩士論文,國立屏東科技大學環境工程與科學系研究所 (2004)。 黃秋嫆,固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究,碩士論文,國立中興大學環境工程學研究所 (1993)。 葉玉雯,比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究,碩士論文,國立中興大學環境工程學研究所 (1999)。 楊茱芳,五氯酚分解菌之分離與及其生理特性研究,碩士論文,國立中興大學環境工程學研究所 (2003)。 楊金鐘、李曉嵐、洪志雄,「奈米零價鐵粉牆結合電動力法整治地下 環境中之硝酸鹽」,第一屆土壤及地下水處理技術研討會(2003)。 廖宏慈,氯酚醌類衍生物誘發DNA 損害作用之研究,碩士論文,國立中興大學環境工程學研究所 (2001)。 廖文彬、高福助,元素鐵濾床結合過氧化氫去除地下水中五氯酚之研究,碩士論文,國立中興大學環境工程學研究所 (2006)。 劉瑞美等,利用土壤微生物降解土壤中有機物染物。土壤肥料通訊,第54 期,第13~16 頁 (1996)。 盧至人譯,地下水的污染整治,國立編譯館 (1998)。 謝立生等譯,環境工程化學,乾泰圖書公司 (1988)。 謝長原,電解催化氧化氯酚之研究,碩士論文,國立成功大學環境工程學研究所(2001)。 Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal,” Environmental Science & Technology, Vol. 30, pp. 153-160 (1996). Allen-King, R. M., R. M. Halket, and D. R. Burris, “Reductive Transformation and Sorption of Cis- and Trans-1,2-Dichloroethene in A Metallic Iron-Water System,” Environmental Toxicology and Chemistry, Vol. 16, pp. 424-429 (1997). Arcand, Y., J. Hawari, and S. R. Guiot, “Solubility of Pentachlorophenol in Aqueous Solutions: The pH Effect,” Water Research, Vol. 29, pp. 131-136 (1995). Barbeau, C., L. Desch&ecirc;nes, D. Karamanev, Y. Comeau, and R. Samson, “Bioremediation of Pentachlorophenol-contaminated Soil by Bioaugmentation Using Activated Soil,” Applied Microbiology and Biotechnology, Vol. 48, pp. 745-752 (1997). Barbeni, M., C. Minero, E. Pelizzetti, E. Borgarello, and N. Serpone, “Chemical Degradation of Chlorophenols with Fenton’s Reagent,” Chemosphere, Vol. 16, pp. 2225-2237 (1987). Ben&iacute;tez, F. J., J. Beltr&aacute;n-Heredia, J. L. Acero, and F. J. Rubio, “Chemical Decomposition of 2,4,6-Trichlorophenol by Ozone Fenton’s Reagent, and UV Radiation,” Industrial & Engineering Chemistry Research, Vol. 38, pp. 1341-1349 (1999). Bergendahl, J. A. and T. P. Thies, “Fenton’s Oxidation of MTBE with Zero-Valent Iron,” Water Research, Vol. 38, pp. 327-334 (2004). Bier, E. L., J. Singh, Z. Li, S. D. Comfort, and P. J. Shea, “Remediating Hexahydro-1,3,5Trinitro-1,2,5-Trazine-Contaminated Water and Soil by Fenton Oxidation,” Environmental Toxicology and Chemistry, Vol. 18, pp. 1078-1084 (1999). Bigg, T. and S. J. Judd, “Zero-Valent Iron for Water Treatment,” Environmental Technology, Vol. 21, pp. 661–670 (2000). Blowes, D. W., C. J. Ptacek, S. G. Benner, K. R. Waybrant, and J. G. Bain, “Porous Reactive Walls for The Prevention of Mine Drainage: A Review,” Environmental Science & Technology, Vol. 31, pp. 3348-3357 (1997). Boussahel, R., D. Harik, M. Mammar, and S. Lamara-Mohamed, “Degradation of Obsolete DDT by Fenton Oxidation with Zero-Valent Iron,” Desalination, Vol. 206, pp. 369-372 (2006). Buhler, D. R., M. E. Rasmusson, and H. S. Nakave, “Occurrence of Hexachlorophene and Pentachlorophenol in Sewage and Water,” Environmental Science & Technology, Vol. 7, pp. 929-934 (1973). Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Tricholroethylene and Tetracholroethylene in a Batch Reactive Metallic Iron-Water System,” Environmental Science & Technology, Vol. 29, pp. 2850-2855 (1995). Buxton, G. V. and C. L. Greenstock, “Critical Review of Rate Constants for Reactions of Hydrated Electrons,” Journal of Physical Chemistry, Vol. 17, pp. 513-886 (1988). Bellack, E., “Arsenic removal from potable water,” J. AWWA , Vol. 63 , No. 7, pp. 454-458 (1971). Borden, R. C., R. T. Goin, and C. M. Kao, “Control of BTEX Migration Using a Biologically Enhanced Permeable Barrier,” Ground Water Monitoring and Remediation, Vol. 17, No. 1, (1997). Beitinger, E., “Permeable Treatment Walls-Design, Constration, and Cost,” NATO/CCMS Pilot Study, EPA 542-R-98-003 (1998). Beltran, F. J., F. J. M. Rivas and P. Alvarez, “Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water,” Water, Air and Soil Pollution, Vol.105, No.5, pp. 685 –700 , (1997). Brillas, E., J. C. Calpe, J. Casado, “Mineralization of 2,4-D by advanced electrochemical oxidation processes,” Water Research, Vol.34, No.8, pp. 2253- 2262, (2000). Brillas E., B. Boye, M. A. Banos, J. C. Calpe, and J. A. Garrido, “Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method,” Chemosphere, Vol. 51, pp.227-235, (2003). Cantrell, K. J., D. I. Kaplan, and T. J. Gilmore, “Injectio of Colloidal Fe0 Parcitles in Sand with Shear-Thinning Fluids,” Journal of Environmental Engineering, Vol. 123, pp. 786-791 (1997). Chamarro, E., A. Marco, and S. Esplugas, “Use of Fenton Reagent to Improve Organic Chemical Biodegradability,” Water Research, Vol. 35, pp. 1047-1051 (2001). Chen, C. T., A. N. Tafuri, M. Rahman, and M. B. Forest, “Chemical Oxidation Treatment of Petroleum Contaminated Soil Using Fenton’s Reagent,” Journal of Environmental Science and Health A33, pp. 987-1008 (1998). Chen, J., D. F. Ollis, W. H. Rulkens, and H. Bruning, “Kinetic Processes of Photocatalytic Mineralization of Alcohols on Metallized Titanium Dioxide,” Water Research, Vol. 33, pp. 1173-1180 (1999). Chen, S. W., M. M. Frey, D. Clifford, L. S. McNeill, and M. Edwards, “Arsenic treatment consideration,” J. AWWA, Vol. 91, No. 3, pp.74-85 (1999). Clark, C. J., P. S. C. Rao, and M. D. Annable, “Degradation of Perchloroethylene in Cosolvent Solutions by Zero-Valent Iron,” Journal of Hazardous Materials, Vol. 96 , pp. 65-78 (2003). Cole, J. D., S. L. Woods, and T. R. Bricker, “Pentachlorophenol Reductive Dechlorination in an Interceptor Trench: Temperature Effects,” Ground Water, Vol.34, pp784-790 (1996). Crosby, D. G., “Environmental Chemistry of Pentachlorophenol,” Pure & Applied Chemistry, Vol. 53, pp. 1051-1080 (1981). Davis, A., J. Campbell, C. Gilbert, M. V. Ruby, M. Bennett, and S. Tobin, “Attenuation and Biodegradation of Chlorophenols in Groundwater at a Former Wood Treating Facility,” Groundwater, Vol. 32, pp. 248-257 (1994). Darmawan, and S. I. Wada, “Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology,” Applied clay science, Vol. 20, pp. 283-293, (2002). De Laat, J. and H. Gallard, “Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solutions: Mechanism and Kinetic Modelling,” Environmental Science & Technology, Vol. 33, pp. 2726-2732 (1999). Den, W., M. Pirbazari, C. C. Huang, and K. P. Shen, “Technology Review for Vapor Phase Biofiltration Part I:Technology Development and Application,” Journal of Chinese Institute of Environmental Engineering, Vol. 8, pp. 159-179 (1998). Fenster, D. E., “Hazardous Waste Laws, Regulations, and Taxes for The U.S. Petroleum Refining Industry,” PennWell Publishing Co., Tulsa, Okla (1990). Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Ground-Water Remediation Technologies Analysis Center, TE-98-02 (1998). Freeman, H. M., “Standard Handbook of Hazardous Waste Treatment and Disposal.,” McGraw-Hill Book Co., New York (1989). Gau, S. H., and F. S. Chang, “Improved Fenton Method to Remove Recalcitrant Organics in Landfill Leachate,” Water Science and Technology, Vol. 34, pp.455-462 (1996). Ghaly, M. Y., G. Ha&Egrave; rtel, R. Mayer, and R. Haseneder, “Photochemical Oxidation of p-Chlorophenol by UV/H2O2 and Photo-Fenton Process. A Comparative Study,” Waste Management, Vol. 21, pp. 41-47 (2001). Gillham, R. W. and S. F. O,Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, Vol. 32, pp. 958-967 (1994). Gillham, R. W., “Development of Iron-Based Reactive Barrier Technologies for Remediation of Chlorinated Organic Contaminants in Groundwater,” NATO/CCMS Pilot Study, EPA 542-R-98-003 (1998). Gnann M., C. H. Gregor, and S. Schelle, “Chemical oxidative process for purifying highly contained wastewater,”WO patent 93/08129, Peroxid- Chemie GmbH, DE, (1993). Goerlitz, D. F., D. E. Troutman, E. M. Godsy, and B. J. Franks, “Migration of Wood-Preserving Chemicals in Contaminated Groundwater in A Sand Aquifer at Pensacola,” Environmental Science, Vol. 19, pp. 955-961 (1985). Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron,” Environmental Progress, Vol. 16, pp. 137-143 (1997). Guerin, T. T., S. Horner, T. McGovern, and B. Davey, “An Application of Permeable Reactive Barrier Technology Petroleum Hydrocarbon Contaminated Groundwater,” Water Research, Vol. 36, pp.15-24 (2002). Hager, D. G., “Innovatuve Hazardous Waste Treatment,” Technology Series, Vol. 2, pp. 143-153 (1990). Hathaway, S.W. and F. Jr. Rubel, “Removing arsenic from drinking wate,” J.AWWA, Vol. 79, No. 8, pp. 61-65 (1987). Han, B., T. Runnells, J. Zimbron, and R. Wickramasinhe, “Arsenic removal from drinking water by flocculation and microfiltration,” Desalination Vol. 145, pp.293-298 (2002). Hua, I., R. H. Hochemer, and M. R. Hoffmann, “Sonolytic Hydrolysis of p-Nitrophenyl Acetate: The Role of Supercritical Wat,” Journal of Physical Chemistry, Vol. 99, pp. 2335-2342 (1995). Huang, Y. H., C. C. Chen, G. H. Huang, S. S. Chou, “Comparison of A Novel Electro-Fenton Method with Fenton’s Reagent in Treating a Highly Contaminated Wastewater,” Water Science and Technology Vol. 43, pp. 17-24 (2001). Hung, H., and M. R. Hoffmann, “Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound,” Environmental Science & Technology, Vol. 32, pp. 3011-3016 (1998). Inmaculada, C., S. Dolores, R. Sloedad, and P. B. Dolores, “Chemical Degradation of Aromatic Amines by Fenton’s Reagent,” Water Research, Vol. 31, pp. 1985-1995 (1997). Kang, S. F., C. H. Liao, and H. P. Hung, “Peroxidation Treatment of Dye Manufacturing Wastewater in the Presence of Ultraviolet Light and Ferrous Ions,” Journal of Hazardous Materials, Vol. 65, pp. 317-333 (1999). Kang, S. F., C. H. Liao, and M. C. Chen, “Pre-Oxidation and Coagulation of Textile Wastewater by the Fenton Process,” Chemosphere, Vol. 46, pp. 923- 928 (2002). Kartinen, E. O., and Jr. Martin, “An overview of arsenic removal process” Desalination, Vol. 103, pp.79-88 (1995). Kao, C. M. and R.C. Borden, “Enhanced Aerobic Degradation of Gasoline Contaminated Aquifer by Oxygen-Releasing Barriers,” Hydrocarbon Biodegradation, CRC Press, Boca, FL, (1994). Koyama, O., Y. Kamagata, and K. Nakamura“Degradation of Chlorinated Aromatics by Fenton Oxidation and Methanogenic Digester Sludge,”Water Research, Vol. 28, No. 4, pp. 895–899, (1994). Kuo, W. G.,“Decolorizing Dye Wastewater with Fenton’s Reagent,”Water Research , Vol. 26, No. 7, pp. 881–886 , (1992). Kim, Y. H., and E. R. Carraway, “Dechloroination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons,” Environmental Science & Technology, Vol. 34, pp. 2014-2017 (2000). Kiwi, J., C. Pulgarin, and P. Peringer, “Effect of Fenton and Photo-Fenton Reactions on the Degradation and Biodegradability of 2 and 4-Nitrophenol in Water Treatment,” Applied Catalysis B: Environment, Vol. 3, pp. 335-350 (1994). Kwon, B. G., D. S. Lee, N. Kang, and J. Yoon, “Characteristics of p-Chlorophenol Oxidation by Fenton’s Reagent,” Water Research, Vol. 33, pp. 2110-2118 (1999). Lelacheur, R. M. and W. H. Glaze, “Reactions of Ozone and Hydroxy1 Radicals with Serine,” Environmental Science & Technology, Vol. 30, pp. 1072-1080 (1996). Li, Z. M., S. D. Comfort, and P. J. Shea, “Destruction of 2,4,6-Trinitrotoluene by Fenton Oxidation,” Journal of Environment, Vol. 26, pp. 480-487 (1997). Lipczynska-Kochany, E., G. Sprah, and S. Harms, “Influence of Some Groundwater and Surface Waters Constitutes on the Degradation of 4-Chlorophenol by the Fenton Reaction,” Chemosphere, Vol. 30, pp. 9-20 (1995). Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup,” International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997). Lu, M. C., J. N. Chen, and C. P. Chang, “Oxidation of Dichlorvos with Hydrogen Peroxide Using Ferrous Ion as Catalyst,” Journal of Hazardous Materials, Vol. 65, pp. 277-288 (1999). Lu, M. C., J. N. Chen, and C. P. Chang, “Effect of Inorganic Ions Oxidation of Dichlorvos Insecticide with Fenton’s Reagent,” Chemosphere, Vol. 35, pp. 2285-2293(1997). Ludwig, R. D., R. G. McGregor, D. W. Blowes, S. G. Benner, and K. Mountjoy, “A Permeable Reactive Barrier for Treatment of Heavy Metal,” Ground Water, Vol. 40, pp. 59-66 (2002). Marc, P. T., V. G. Molina, M. A. Ba&ntilde;os, J. Gim&eacute;nez, S. Esplugas, “Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review,” Applied Catalysis B: Environmental, Vol. 47, pp. 219–256 (2004). Matheson, L. J.and P. G. Tratnydk, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental Science & Technology, Vol. 28, pp. 2045-2053 (1994). McCarthy, D. L., S. Navarrtet, W. S. Willett, P. C. Babbitt, and S. D. Copley, “Exploration of the Relationship Between Tetrachlorohydroquinone Dehalogenase and the Glutathione S-transferase Superfamily,” Biochemistry, Vol. 35, pp. 14634-14642 (1996). Mecozzi, R., L. D. Plama, D. Pilone, and L. Cerboni, “Use of EAF Dust as Heterogeneous Catalyst in Fenton Oxidation of PCP Contaminated Wastewaters,” Journal of Hazardous Materials B, Vol. 137, pp. 886-892 (2006). Melitas, N., M. Conklin, and J. Farrell, “Electrochemical Study of Arsenate and Water Reduction on Iron Media Used for Arsenic Removal from Potable Water,” Environmental Science & Technology, Vol. 36, No. 14, pp. 3188-3193 (2002). Mueller, J. G., P. J. Chapman, and P. H. Pritchard, “Creosote-Contaminated Sites,” Environmental Science & Technology, Vol. 23, pp. 1197-1201 (1989). Muftikian, R., Q. Fernando, and N. Korte, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water,” Water Research, Vol. 29, pp. 2434-2439 (1995). Nam, K., W. Rodriguez, and J. J. Kukor, “Enhanced Degradation of Polycyclic Aromatic Hydrocarbons by Biodegradation Combined with a Modified Fenton Reaction,” Chemosphere, Vol. 45, pp. 11-20 (2001). Nowosielski, B. E., “Experimental Study of Octanol-Water Partition Coefficients for 2,4,6-trichlorophenol and pentachlorophenol: Derivation of an Empirical Model of Chlorophenol Partitioning Behavior,” Applied Geochemistry, Vol. 13, pp 893-904 (1998). Ning, R. Y., “Arsenic removal by reverse osmosis,” Desalination, Vol. 143, pp. 237-241 (2002). Orth, S. W., and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environmental Science & Technology, Vol. 30, pp. 66-71 (1996). Oturan, M. A. , N. Oturan, C. Lahitte, and S. Trevin,“Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent Application to the mineralization of an organic micropollutant, pentachlorophenol.”Journal of Electroanalytical Chemistry, Vol. 507, pp. 96–102(2001). Pignatello, J. J., “Dark and Photoassisted Fe3+-catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide,” Environmental Science & Technology, Vol. 26, pp. 944-951 (1992). Pignatello, J. J., M. M. Martinson, J. G. Steiert, R. E. Carlson, and R. L. Crawford, “Biodegradation and Photolysis of Pentachlorophenol in Artificial Freshwater Streams,” Applied and Environmental Microbiology, Vol. 46, pp. 1024-1031 (1983). Pratap, K. and A. T. Lemley, “Fenton Electrochemical Treatment of Aqueous Atrazine and Metolachlor. ” Journal of Agricaltural and Food Chemistry, Vol. 46, pp. 3285-3291 (1998). Richard, L., L. Bastiaens, B. Brigitte, M. Maesen, J. Gemoets, and L. Diels, “Batch-test Study on the Dechlorination of 1,1,1-Trichloroethane in Contaminated Aquifer Material by Zero-Valent Iron,” Journal of Contaminant Hydrology, Vol. 74, pp. 133-144 (2004). Real, J., and S. Shelton, “Permeable Barriers to Remove Benzene: Candidate Media Evaluation,” Journal of Environmental Engineering, ASCE, Vol. 121, pp. 411-415 (1995). Scherer, M. M., S. Richter, R. L. Valentine, and J. J. Alvarez, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean Up,” Critical Reviews in Environmental Science and Technology, Vol.30, pp. 363-411 (2000). Starr, R. C., and J. A. Cherry, “In Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System,” Ground Water, Vol. 32, No. 3, pp.465- 476 (1994). Sedivy, R. A., J. M. Shafer, and L. C. Bilbrey, “Design Screening Tools for Passive Funnel and Gate Systems,” Ground Water Monitoring and Remediation, pp.125-133 (1999). Shariifan, H. and D. W. Kirk“Electrochemical Oxidation of Phenol,”J. Electrochem. Soc., Vol.133, pp. 921 –924 (1986). Schumann, U. and P. Grundler, “Electrochemical degradation of organic substances at PbO2 anodes monitoring by continuous CO2 measure –ments, Water Research, Vol. 32, No. 9, pp.2835-2842 (1998). Sedlak, D. L. and A. W. Andren, “Oxidation of Chlorobenzene with Fenton’s Reagent.” Environmental Science & Technology, Vol. 25, pp. 777-782 (1991). Seriler, J. P., “Pentachlorophenol,” Mutation Research, Vol. 257, pp. 27-47 (1991). Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Water Research, Vol. 30, pp. 2315-2322 (1996). Su, C., and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science & Technology, Vol. 33, pp. 163-168 (1999). Sun, Y., S. D. Comfort, and P. J. Shea, “Photochemical Reactions Involved in the Total Mineralization of 2,4-D by Fe3+/H2O2/UV,” Environmental Science & Technology, Vol. 27, pp. 304-310 (1993). Tang, W. Z. and C. P. Hung, “The Effect of Chlorine Position of Chorinated Phenols on their Dechlorination Kinetics by Fenton’s Reagent, “Waste Management, Vol. 15, pp.615~622 (1995). Tang, W. Z. and S. Tassos, “Oxidation Kinetics and Mechanisms of Trihalomethanes by Fenton’s Reagent,”Water Research, Vol.31, No.5, pp. 1117–1125 (1997). Teel, A. L., C. R. Warberg, D. A. Atkinson, and R. J. Watts, “Comparison of Mineral and Soluble Iron Fenton’s Catalysts For the Treatment of Trichloroethylene.” Water Research, Vol. 35, pp. 977-984 (2001). U. S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents,” US Army Corps of Engineers, DG 1110-345-11(1997). U. S. EPA, “An Overview of Underground Storage Tank Remediation Options ” Office of Solid Waste and Emergency Response, 5403W, EPA/510/F-93/029 (1993). U. S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation,” Office of Research and Development, Washington, DC 20460, EPA/600/R-98/125 (1998). U.S. EPA, Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 (2002). Vallecillo, A., G. Encina, and M. Pe&ntilde;a, “Anaerobic Biodegradability and Toxicity of Chlorophenols,” Water Science and Technology, Vol. 40, pp. 161-168 (1999). Ventura, A., G. Jacquet, A. Bermond, V. Camel, “Electrochemical Generation of the Fenton’s Reagent Application to Atrazine Degradation,” Water research, Vol.36, pp. 517-522 (2002). Ventura A., G. Jacquet, A. Bermond, and V. Camel, “Electrochemical generation of the Fenton’s reagent application to atrazine degradation,” Water research ,Vol. 36, pp. 517-3522 (2002). Vidic, R. D., “Permeable Reactive Barriers : Case Study Review,” Technology Evaluation Report, Ground Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA (2001). Walling, C., “Fenton’s Reagent Revisited,” Account of Chemical Research, Vol. 8, pp. 121-131 (1975). Walling, C. and A. Goosen, “Mechanism of the Ferric Ion Catalysed Decomposition of Hydrogen Peroxide: Effects of Organic Substrate,” Journal of American Chemical Society, Vol. 95, pp. 2987-2991 (1973). Wanger, T., “In Our Backyard A Guide to Understanding Pollution and its Effects, ” Van Nostrand Reinhold, New York (1994). Waypa J. J., M. Elimelech, and J. G. Hering, “Arsenic removal by RO and NFmembranes,” J. AWWA, Vol. 89, No. 10, pp. 102-114 (1997). Wark, I. W.,“The Electrodeposition of Zinc from Acidified Zinc Sulphate Solution,”Journal of Applied Electrochemistry, Vol. 9 , pp. 721-730 (1979). Wang, Q., A. T. Lemley,“Oxidation of diazinon by anodic Fenton treatment,” Water research ,Vol. 36, pp.3237-3244 (2002). Wightman, P. G., and J. B. Fein, “Experimental Study of 2,4,6 -Trichlorophenol and Pentachlorophenol Solubilities in Aqueous Solutions: Derivation of a Speciation-Based Chlorophenol Solubility Model,” Applied Geochemistry, Vol. 14, pp 319-331 (1999). Wink, D.A., R.W. Nims, and P.C. Ford, “Oxidizing Intermediates Generated in the Fenton Reagent: Kinetic Arguments Against the Intermediacy of the Hydroxyl Radical,” Environmental Health Perspectives, Vol. 102, pp. 11-15 (1994). Wu, Z., M. Zhou, and D. Wang, “Synergetic effects of anodic–cathodic electrocatalysis for phenol degradation in the presence of iron(II),” Chemosphere, Vol. 48, pp.1089–1096 (2002). Wust, W. F., R. Kober, O. Schlicker, and A. Dahmke, “Innovative Technology Description,” Environmental Science & Technology, Vol. 33, pp. 4304-4309 (1999). Yang, Mu, H. Q. Yu , J. C. Zheng, S. J. Zhang, and G. P. Sheng, “Reductive Degradation of Nitrobenzene in Aqueous Solution by Zero-Valent Iron,” Chemosphere, Vol. 54, pp. 789-794 (2004). Yoon, J., Y. Lee, and S. Kim, “Investigation of the Reaction Pathway of OH Radicals Produced by Fenton Oxidation in the Conditions of Wastewater Treatment, ” Water Science and Technology, Vol. 44, pp. 15-21 (2001). Yin, Y. and H. E.Allen, In Situ Chemical Treatment, Technology Evaluation Report,Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA,USA(1999). Zawaideh, L. L. and T. C. Zhang, “The Effects of pH and Addition of an Organic Buffer (HEPES) on Nitrate Transformation in Fe-Water Systems,” Water Science And Technology, Vol. 38, pp. 107-115 (1998). Zhang, Z., Q. Xiang, H. Glatt, K. L. Platt, B. D. Goldstein, and G. Witz, “Studies on Pathways of Ring Opening of Benzene in a Fenton System.” Free Radical Biology & Medicine, Vol. 18, pp. 411-419 (1995).
摘要: 本研究應用近年來大為發展的地下水現地整治技術:零價鐵透水性反應牆,其經濟、操作簡單,藉由所填充的零價鐵,可將高氯量碳氫化合物完全破壞去除或轉化為較低氯量之碳氫化合物,並結合近年來熱門的廢水處理技術E-Fenton法,其藉在陰極還原成過氧化氫,立即與溶液中的亞鐵離子催化成氫氧自由基,形成與傳統Fenton法相同的效果,去除地下水中的五氯酚。 本研究之目的在於評估透水性反應牆對五氯酚之脫氯效果,以及E-Fenton反應對五氯酚進一步之破壞去除,並且利用循環批次實驗探討系統處理的最佳條件及對五氯酚的處理機制,最後再進行實驗數據之整理。 由背景實驗結果可發現,過氧化氫生成實驗中,空氣流量為0.7 L/min時,有最大的過氧化氫生成效率5.2×E-3 mg/min。當五氯酚的濃度為5mg/L,pH= 4,水流方向為陰極流向陽極,反應牆中填入零價鐵/石英砂=1/60(g/g),提供電流密度為0.75mA/cm2,迴流量為20 mL/min的條件下,去除率可達63%,礦化率可達26%。並且E-Fenton結合反應牆的處理系統,相較於傳統的添加過氧化氫的Fenton反應,明顯的提高去除率及礦化率。但是,在本系統中亞鐵離子的濃度過高,若要提升系統效能,可提高過氧化氫的生成量。
Permeabe reactive barrier(PRB) embedded with zero-valent iron(Fe0) has been used as the remediation technology of ground water. The method develops greatly in the recent years for the dechlorination or completely destroy of pentachlorophenol(PCP). The E-Fenton method is a popular waste water treatment technique that could produce hydrogen peroxide by cathode, which then react with ferrous iron (called Fenton processes). Fenton reaction could degrade PCP by oxidation. The purpose of this study is to estimate the removal of PCP by E-Fenton coupled with PRB in a recirculating batch experiment, and to gain the best condition for this system and the removal mechanism of PCP. Based on the results of background experiment, 0.7 L/min air applying could produce 5.210-3 mg/min hydrogen peroxide. PCP of 5 mg/L could be degraded for 63%, and mineralized for 26% when initial pH is 4, flow direction is cathode to anode, PRB consists of Fe0/quartz sand(QS)=1/60(g/g), current density is 0.75mA/cm2, and flow rate is 20 mL/min. The removal efficiency and mineralization of E-Fenton is better than those of traditional Fenton process. Because of the concentration of Fe2+ is too high in this system, when the efficiency increased proportionally, the producing ratio of hydrogen peroxide increased.
URI: http://hdl.handle.net/11455/5393
其他識別: U0005-0807200811500200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0807200811500200
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.