Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5399
標題: 利用過渡金屬V改質TiO2/ITO光觸媒電極特性及光活性之研究
Study on the characteristic and photoactivity for V-TiO2/ITO photocatalytic electrode
作者: 汪昀昇
Wang, Yun-Sheng
關鍵字: Vanadium
過渡金屬釩
Photocatalytic electrode
Photocatalytic
Photoelectrocatalytic
氧化銦錫玻璃
光觸媒電極
光催化反應
光電催化反應
出版社: 環境工程學系所
引用: 申洋文、車雲霞(1998)“無機化學叢書,第八卷,鈦分類”科學出版社,北京。 林榮良(2002)“TiO2光催化原理和應用例子”Chemistry (The Chinese Chem. SOC., Taipei),60(3),457-461。 胡振國譯(1989)“半導體元件-物理與技術”,全華圖書公司。 洪雲傑(2005)“以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究”,碩士論文,國立中興大學環境工程學系。 陳松興(1978)“異相催化反應”,徐氏基金會。 許招墉(1992)“光電工學概論”,全華圖書公司。 黃文魁、鄭光煒、王偉洪、陳怡甄(2004) “亞太奈米光觸媒之技術發展趨勢與應用市場”,工業技術研究院。 盧明俊、阮國棟、陳重男(1991)“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集。 謝芳生、劉濱達譯(1986)“微電子學”,東華書局。 Aegerter, M.A. (1989). "Sol-gel: science and technology." World Scientific, New Jersey. An, T., Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z. (2005). "Hotoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor." Applied Catalysis A: General, 279, 247-256. Bideau, M., Claudel, B., Dubien, C., Faure, L., and Kazouan, H. (1995). "On the immobilization of titanium dioxide in the photocatalytic oxidation of spent waters." Journal of Photochemistry and Photobiology A: Chemistry, 91, 137-144. Byren, J. A. and Eggins, B. R. (1998). "Photoelectrochemistry of oxalate on particulate TiO2 electrode." Journal of Electroanalytical Chemistry, 457, 61-72. Bhattacharya, A. K., Pyke, D. R., Reynolds, R.,Walker, G. C. and Werrett, C. R.(1997). "The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide." Journal of Materials Science Letters, 16, 1-3. Brinker, C. J. and Scherer, G. W. (1990). "Sol gel science." Academic Press. Bulent E. and Yoldas (1986). "Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters." Journal of Materials Science, 21, 1087-1092. Carp, O., Huisman, C. L., and Reller, A. (2004). "Photoinduced reactivity of titanium dioxide." Progress in Solid State Chemistry, 32, 33-177. Chen, H. W., Ku, Y., and Kuo, Y. L. (2007). "Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis." Water Research, In Press, Corrected Proof. Childs, L. P. and Ollis, D. F. (1980). "Is photocatalysis catalytic?" Journal of Catalysis, 66, 383-390. Choi, W., Termin, A., and Hoffmann, M. R. (1994). "The role of metal ion dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Tecombination Dynamics." American Chemical Society, 98, 13669-13679. Dean, J. A., ed. (1973). "Lange''s handbook of chemistry, Ilth ed. " Mcgraw-Hill, New York, 3-123. Doeuff, S., Henry, M., Sanchez, C. and Livage, J. (1987), "Hydrrolysis of titanium alkoxide: Modification of the molecular precursor by acetic acid." Journal of non-crystalline solids, 89, 206-216. Doede, C. M. and Walker, C. A. (1955). "Photochemical engineering." Chemical Engineering, 62(2), 159-178. Egerton, T. A., Janus, M., and Morawski, A. W. (2006). "New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate." Chemosphere, 63, 1203-1208. Finklea, H. O. (1988). "Semiconductor electrode." Elsevier Press, New York. Fox, M. A. and Dulay, M. T. (1993). "Heterogeneous photocatalysis." Chemical Reviews, 93, 341-350. Gratzel, M. (1983). "Energy: resources through photochemistry and catalysis." Acadamic Press lnc. Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A. and Furic, K. (1996), "Microstructure of nanosized TiO2 obtained by sol-gel synthesis." Materials Letters, 28, 225-229. Gratzel, M., Serpone, N. and Pelizzetti, E., Ed. (1989). "Colloidal semiconductor-in photocatalysis." John Wiley & Sons, New York. He, C., Li, X. Z., Graham, N., and Wang, Y. (2006). "Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application." Applied Catalysis A : General, 305, 54-63. Hague, D. C. and Mayo, M. J. (1994). "Controlling crystallinity during processing of nanocrystalline titania." Journal of the American Ceramic Society, 77, 1957-1960. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann (1995). "Environmental applications of semiconductor photocatalysis." Chemical Reviews, 95, 69-75. Habibi, M. H., and Talebian, N. (2007). "Photocatalytic degradation of an azo dye X6G in water : A comparative study using nanostructured Indium tin oxide and titanium oxide thin films." Dyes and Pigments, 73, 186-194. Habibi, M. H., Talebian, N., and Choi, J. (2006). "Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation." Thin Solid Films, 515, 1461-1469. Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. (2001). "Preparation of stable anatase-type TiO2 and its photocatalytic performance." International Journal of Inorganic Materials, 3, 809–811. Jorge, S. M. A., J. J. d. Sene, and A. d. O. Florentino (2005). "Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode." Journal of Photochemistry and photobiology A : Chemistry, 174, 71-75. Kamat, P. V. (1993). "Photochemistry on nonreactive and reactive (semiconductor) surfaces." Chemical Reviews, 93, 267-269. Kumar, K. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H. and Morooka, S. (1992). "Densification of nanostructured titania assisted by aphase-transformation," Nature, 358, 48-51. Legan, R. W. (1982). "Ultraviolet light takes on CPI roles." Chemical Engineering, January, 89, 95-100. Lu, A., Li, Y., Lv, M., Wang, C., Yang, L., Liu, Juan., Wang, Y., Wong, K. K., and Wong, P. K. (2007). "Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light." Solar Energy Materials and Solar Cells, 91, 1849-1855. Li, J., L. Li, L. Zheng, Y. Xian, and L. Jin (2006). "Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method." Electrochimica Acta, 51, 4942-4949. Lewis, N. S.. Rosenbluth, M. L., Serpone, N. and Pelizzetti, E., Ed. (1989). "Theory of semiconductor materials-in photocatalysis." John Wiley & Sons, New York. Li, X. Z., Zhao, B. X., and Wang, P. (2007). "Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process." Journal of Hazardous Materials, 147, 281-287. Mohamed, M. M., Baoumy, W. A., Khairy, M., and Mousa, M. A. (2008). "Structural features and photocatalytic behaviour of titania and titania supported vanadia synthesized by polyol functionalized materials." Microporous and Miesoporous Materials, 109, 445-457. Maron, S. H. and Lando, J. B. (1974). "Fundamentals of Physical Chemistry." Macmillan Publishing Co. Inc., New York, 720. Moulder, J. F., Stickle, W. f., Sobol, P. E., and Bomben, K. D. (1992). "Handbool of X-ray Photoelectron Spectroscopy." Perkin-Elmer Corporation Physical Electronics Division. Ma, Y., Guoa, L., Yan, W., and Liu, H. (2001). "Photocatalytic activity of TiO2 film grown on different substrates." Chemosphere, 44, 1087-1092. Ollis, D. F., Pelizzetti, E. and Serpone, N. (1991). "Destruction of water contaminants." Environmental Science & Technology, 25(9), 1523-1529. Okamoto, K., Yasunori, Y., Hirok, T., Masashi, T., and Akira, T. (1985). "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder." Bulletin of the Chemical Society of Japan, 58, 2015-2022. Prengle, H. W. and Mauk, C. E. (1978). "New technology: ozone/UV chemical oxidation waste water process for metal complexes, organic species and disinfection." AIChE Symposium Series, 74(178), 228. Stumm, W. (1992). "Chemstry of the solid-water interface." John Wiley & Sons, New York. Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L. and Mulins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water.”, Water Environment Research, 65(5), 665-673. Sakata, T., Kawai, T., Gratzel, M., Ed. (1983). "Photosynthesis and photocatalysis with semiconductor powder-in energy resources through photochemistry and catalysis." Academic Press, New York. Srinivasan, S. S., Wade, J., Stefanakos, E. K., and Goswami, Y. (2006). "Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2." Journal of Alloys and Compounds, 424(1-2), 322-326. Turro, N. J. (1965). "Molecular photochemistry." Columbia University, New York, 1. Turner, J. C. R. (1981). "An introduction to the theory of catalytic reactors." Catalysis Science and Technology, 1, 43-86. Texier, I., Ouazzani, J., Delaire, J. and Giannotti, C. (1999). "Study of the Mechanisms of the photodegradation of atrazine in the presence of two photocatalysts: TiO2 and Na4W10O32." Tetrahedron, 55(11), 3401-3412. Uzunova, M., Kostadinov, M., Georgieva, J., Dushkin, C., Todorovsky, D., Philippidis, N., Poulios, I., and Sotiropoulos, S. (2007). "Photoelectrochemical characterisation and photocatalytic activity of composite La2O3-TiO2 coatings on stainless steel." Applied Catalysis B: Environmental, 73, 23-33. Wu, J. C. S. and Chen, C. H. (2004). "A visible-light response Vanadium-doped titania nanocatalyst by sol-gel method." Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 509-515. Waldner, G., Gómez, R., and Neumann-Spallart, M. (2006). "Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase : Case of oxalic acid." Electrochimica Acta, 52, 2634-2639. Waldner, G., M. Pourmodjib, R. Bauer, and M. Neumann-Spallart (2002). "Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes." Chemosphere, 50, 989-998. Wang, J., Uma, S. and Klabunde, K. J. (2004). "Visible light photocatalysis in transition metal incorporated titania-silica aerogels." Applied Catalysis B: Environmental, 48(2), 151-154. Xie, Y. and Yuan, C. (2004). "Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation." Applied Surface Science, 221(1-4), 17-24. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., and Anpo, M. (2003). "Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2." Catalysis Today, 84(3-4), 191-196. Yang, J., Mei, S. and Rerreira, J. M. F. (2000). "Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition." Journal of the American Ceramic Society, 83(6), 1361-1368. Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste." Environmental Science & Technology, 22(3), 256-257. Zafiriou, O. C., Dubien, J. J., Zepp, R. G. and Zika, R. G. (1984). "Photochemistry of natural waters." Environmental Science & Technology, 18(12), 358-371. Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S. (2007). "Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, In Press, Corrected Proof.
摘要: 本研究嘗試以過渡金屬釩(Vanadium)對二氧化鈦光觸媒進行改質,利用溶膠凝膠法製備TiO2光觸媒及V-TiO2光觸媒,再經由含浸方式將光觸媒披覆於氧化銦錫導電玻璃(Indium-Tin Oxide)上,製備成電極形式;其中過渡金屬釩及鈦之莫耳比分別為0.05、0.10、0.20和0.30。透過場發射掃描式電子顯微鏡(FE-SEM)、化學分析電子能譜儀(ESCA)、X-ray繞射儀(XRD)及表面等電荷點(pHIEP)分析不同光觸媒電極間的差異,並經由降解亞甲基藍(Methylene blue)光催化及光電催化實驗,探討光觸媒電極之活性。 由FE-SEM、XRD及ESCA等特性分析結果可知,本研究製備之TiO2/ITO光觸媒電極,顆粒大小約為30 nm,結晶構造為銳鈦礦晶型。而V-TiO2/ITO光觸媒電極顆粒大小一致性差,粒徑大小為10 nm至100 nm不一,晶型則轉變成銳鈦礦及金紅石混合型晶型。利用過渡金屬V改質後之光觸媒電極中之Vn+,主要以V3+、V4+及V5+存在。表面等電位點結果顯示,添加過渡金屬釩之TiO2光觸媒電極有較低之pHIEP。 於本研究中,不論吸附實驗或是光催化實驗,皆以0.30VT-I光觸媒電極具有最佳之去除亞甲基藍能力。以不同光源進行光催化實驗中發現,0.30VT-I光觸媒電極於紫外光及可見光系統下,對亞甲基藍之去除量相近。由光電流實驗推測,利用過渡金屬V改質後之光觸媒電極可能會由N型半導體轉變成P型半導體。依光電催化實驗結果,外加0.300 V電壓可有效提升整體光觸媒電極之光電催化能力。
The object of this study is to modify the TiO2/ITO photocatalytic electrode with vanadium. The V-doped TiO2/ITO photocatalytic electrodes were synthesized by sol-gel method and dip-coating method. Both TiO2/ITO and V-TiO2/ITO photocatalytic electrodes were characterized by Field emission scanning electron microscope(FE-SEM), Electron spectroscopy for chemical analysis system(ESCA), X-ray diffractometer(XRD)and Isoelectric point(pHIEP). The photocatalytic and photoelectrocatalytic activities were evaluated by the degradation of methylene blue under different parameters. As the results of the external analysis of SEM, ESCA and XRD, the particle size of the TiO2/ITO photocatalytic electrode is about 30 nm and mainly Anatase structure. The particle size of V-TiO2/ITO photocatalytic electrodes is not uniform with the size range, from 10nm to 100 nm. The contents of the Rutile phase increase with the increase of the amount of doped Vanadium. Vanadium in the photocatalytic electrodes is in the status of V3+, V4+ and V5+. The pHIEP of V-doped TiO2/ITO photocatalytic electrodes are more lower than pure TiO2/ITO photocatalytic electrode. The 0.30VT-I photocatalytic electrode has the best ability both on the adsorption and photocatalytsis. Even in the visible light system, the 0.30VT-I photocatalytic electrode has great photoactivity as same as in the UV light system. The V-doped TiO2/ITO photocatalytic electrodes may convert N-type semiconductor into P-type semiconductor. Applied potential 0.300V would effectively increase the photoelectrocatalytic activity.
URI: http://hdl.handle.net/11455/5399
其他識別: U0005-1006200811302000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1006200811302000
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.