請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5404
標題: MSWI飛灰中重金屬經電沈積法回收後資源化之研究
To Recover Heavy Metals and Stabilize Fly Ash from Municipal Waste Incinerator by Electro-Deposition Process
作者: 王薪嘉
Wang, Sing-Chia
關鍵字: MSWI fly ash
MSWI飛灰
electrodeposition
TCLP
Recycling
電沈積
TCLP
資源化
出版社: 環境工程學系所
引用: 一、中文部分 1.吳家誠,「重金屬之化學物種分類與分析技術」,化學,第49期,第316-322頁,1991。 2.行政院環境保護署;統計室年報表,2007。 3.顧順榮、鐘昀泰、張木彬,「台灣地區都市垃圾林化灰份中重金屬濃度及TCLP溶出評估」,第十屆廢棄物處理技術研討會論文集,第271-279頁,1995。 4.林家禾,「垃圾焚化飛灰中無機氯鹽對重金屬溶出之影響」,碩士論文,私立淡江大學水資源及環境工程研究所,淡水,1995。 5.楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,第43-49頁,1996。 6.李建中、李釗、何啟華、鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,第193頁,1996。 7.王鯤生、江康鈺、張木彬、孫長榮、劉宗諭,「焚化灰渣熔融處理特性及資源化之研究」,第十二屆廢棄物處理技術研討會論文集,台北,第249頁,民國86年12月。 8.王鯤生、張木彬,「高溫熔融處理事業廢棄物焚化灰燼之減量、經濟性及資源再利用之研究」,期末報告,榮民工程事業管理處,1997。 9.詹炯淵,「垃圾焚化飛灰管理對策之研究」,國立台灣大學環境工程學研究所碩士論文,台北,2001。 10.李釗、于諄德、陳迪華、曾迪華,「垃圾焚化飛灰固化前之前處理分法研究」,第十二屆廢棄物處理技術研討會論文集,台北,第231頁,民國八十六年十月。 11.廖明村、李宜欣、孫世勤,「垃圾焚化飛灰處理與再利用之探討」,化工技術,第14卷,第2期,PP.167-181,2006。 12.冯军会、何品晶、曹群科、章 骅、张沛君,「垃圾焚烧飞灰中重金属浸出的影响因素」,ENVIRONMENTAL CHEMISTRY, 第24卷,第4期,2005。 13.高思懷,「焚化廠灰渣處理及資源化技術」,行政院環境保護署環境保護人員訓練所垃圾焚化廠操作營運管理訓練班,第1-31頁。 14.初建、王敏昭,「重金屬於其污染土壤之固相型態」,中國農業化學會誌,第37卷,第1期,臺北,第32-41頁,1999。 15.斯克誠、駱尚廉,「土壤與地下水污染整治政策與其實務」,土木水利,第26卷,第4期,第50-58頁,2000。 16.白育綸、胡啟章,「電沈積鐵族合金之組成控制、表面奈米化及應用」,博士論文,國立中正大學化學工程研究所,嘉義,2003。 17.陳雍程,「土壤樣品鉛、鎘的逐步萃取」,碩士論文,國立中興大學環境工程學系,台中,2000。 18.蘇惠靖,「以萃取法復育受重金屬污染土壤之可行性評估」,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2003。 19.張俊鴻,「以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究」,碩士在職專班論文,國立中央大學環境工程研究所,中壢,2006。 20.鐘元章,「垃圾焚化飛灰以磷酸無害化處理之研究」,碩士論文,淡江大學水資源及環境工程學系,台北,2002。 21.廖文彬、楊仁泊、周政賢,「垃圾焚化飛灰重金屬總量分析之探討」,環境分析化學研討會, 中興大學,2006。 22.周政賢,廖文彬,「利用電動力法處理MSWI飛灰重金屬之研究」,碩士論文,國立中興大學環境工程學系,台中,2007。 23.王志典,陳勝一,「底泥重金屬生物有效性及生物累積性之研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄,2007。 24.古彥菁、余榮山、鈴木義男,「焚化飛灰重金屬捕集無害化技術之探討」,第15屆廢棄物處理技術研討會論文集,2000。 25.林世強,「以垃圾焚化灰為原料之環保水泥生產技術與物性探討」,第17屆廢棄物處理技術研討會論文集,2002。 26.田福助,「電化學:基本原理與應用」,五洲,1988。 27.行政院環境保護署;事業廢棄物管制資訊網,2005。 二、西文部分 28.Carlton, C. Wiles., “Municipal solid waste combustion ash:State-of- the-Knowledge”, Journal of Hazardous Materials, Vol. 47, PP. 325-344, 1996. 29.Narukawa, T., Kenneth, W. R., David, H. F. and Koichi, C ., “Speciation of chromium in Australian fly ash”, Talanta, 2007. 30.Mangialardi, T., “Sintering of MSW fly ash for reuse as a concrete aggregate“ , Journal of Hazardous Materials, Vol. 87, pp. 225-239, 2001. 31.Ferreira, C., Ribeiro, A. and Ottosen, L., “Possible applications for municipal solid waste fly ash”, Journal of Hazardous Materials, Vol. 96, pp. 201-216, 2003. 32.Tchobanoglous, G., Theisen, M. and Vigil, S., Integrated Solid Waste Manage. Engineering Principles and Management Issues. McGraw-Hill, 1993. 33.Paasivirta, J., Chemical Ecotoxicology. Lewis Publishers, 1991. 34.Young, J. P. and Jong, H., “Vitrification of fly ash from municipal solid waste incinerator”, Journal of Hazardous Materials, Vol. 91, pp. 83-93, 2002. 35.Haugsten, K. E. and Gustavson, B., “ Environmental properties of vitrified fly ash from hazardous and municipal waste incineration”, Waste Management, Vol. 20, pp. 167-176, 2000. 36.Takayuki, S. and Masataka, H., “Behavior of stabilized fly ashes in solid waste landfills”, Waste Management, Vol. 16, pp. 545-554, 1996. 37.Yvon, J., Antenucci, D., Jdid, E. A., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P. and Veschkens, M., “Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders“, Journal of Geochemical Exploration, Vol. 90, pp. 143-155, 2006. 38.Wang, S. Y. and Vipulanandan, C., “Leachability of lead from solidified cement-fly ash binders”, Cement and Concrete Research, Vol. 26, pp. 895-905, 1996. 39.Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A. and S. Francesconi.,“Innovative stabilization/solidfication processes of fly ash from an incinerator plant of urban solid waste”, Microchemical Journal, Vol. 79, pp. 29-35, 2005. 40.Querol, X., Fernandez-Turiel. J, L. and Lopez-Soler, A., “Trace Element in Coal and Their Behavior During Combustion in a Large Power Station”, Fuel, Vol. 74 pp. 331-343, 1995. 41.Hamernik, J. D. and Frantz, G. C., “Physical and Chemical Properties of Municipal Solid Waste Fly Ash”, ACI Materials Journal, Vol. 88, pp. 294, 1991. 42.Huang, W. J. and Chu, S. C.,“A study on the cementlike properties of municipal waste incineration ashes”, Cement and Concrete Research, Vol. 33, pp. 1795–1799, 2003. 43.U.S. EPA, Office of Solid Waste and Emergency Response,Technology Innovation Office, Washington, DC, 2002. 44.Mountouris, A., Voutsas , E. and Tassios, D.,“Bioconcentration of heavy metals in aquatic environments: the importance of bioavailability”, Marine Pollution Bulletin, Vol. 44, pp. 1136-1141, 2002. 45.Lin, D. F., Lin, J. D. and Chen, S. H.,“The application of baghouse fines in Taiwan Resources”, Conservation and Recycling, Vol. 46, pp. 281-301, 2006. 46.IAWG (The International Ash Working Group).,“Municipal Solid Waste Incinerator Residues”, Elsevie, 1997. 47.Kida, A., Noma, Y. and Imada, T., “Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes”, Waste Management, Vol. 16, pp. 527-536, 1996. 48.Wadge, A., Hutton, M. and Peterson, P. J., “The Concentrations and Particle Size Relationships of Selected Trace Elements in Fly ashes from U.K. Coal-Fired Power Plants and Refuse Incinerator”, Science Total. Environment, Vol. 54, pp. 13-57, 1986. 49.Mulder, E., “Pre-treatment of MSWI Fly Ash For Useful Application”, Waste Management, Vol. 16, pp. 181, 1996. 50.Mangialardi, T., Paolini, A. E., Polettini, A. and Sirini, P., “ Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol. 70, pp. 53-70, 1999. 51.Park, Y. J. and Heo, J., “Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling”, Ceramics International, Vol. 28, pp. 689-694, 2002. 52.Arvelakis, S. and Frandsen, F. J., “Study on analysis and characterization methods for ash material from incineration plants”, Fuel, Vol. 84, pp. 1725-1738, 2005. 53.Andiç, Ö., Ramyar, K. and Korkut, Ö., “Effect of fly ash addition on the mechanical properties of tile adhesive”, Construction and Building Materials, Vol. 19, pp. 564-569, 2005. 54.Forteza, R., Far, M., Seguı́, C. and Cerdá, V., “Characterization of bottom ash in municipal solid waste incinerators for its use in road base”, Waste Management, Vol. 24, pp. 899-909, 2004. 55.Karamanov, A., Pelino, M. and HreglichSintered, A., “glass-ceramics from Municipal Solid Waste-incinerator fly ashes—part I: the influence of the heating rate on the sinter-crystallisation”, Journal of the European Ceramic Society, Vol. 23, pp. 827-832, 2003. 56.Casa, G. D., Mangialardi, T., Paolini, A.E. and Piga, L., “Physical-mechanical and environmental properties of sintered municipal incinerator fly ash”, Waste Management, Vol. 27, pp. 238-247, 2007. 57.Singh, I. B., Chaturvedi, K., Morchhale, R. K. and Yegneswaran, A. H., “Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay”, Journal of Hazardous Materials, Vol. 141, pp. 215-222, 2007. 58.Haiying, Z., Youcai, Z. and Jingyu, Q., “Study on use of MSWI fly ash in ceramic tile”, Journal of Hazardous Materials, Vol. 141, pp. 106-114, 2007. 59.Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C. Lee, M. Y. and Wang, C. F.,“Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash ” , Journal of Hazardous Materials, pp. 1-33, 2007. 60.Lee, P. H., Delay, I. and Nasserzadeh, V.,“Characterization Deconta-munation and Health Effects of Fly Ash from Waste Incinerators”, Environmental Progress, Vol. 17, pp. 261-269, 1998. 61.Birnbaum, L. and Richer, U., “Detailed Investigations of Filter Ashes From Municipal Solid Waste Incineration”, Waste Management & Research, Vol. 16, pp. 190-194, 1998. 62.Zhang, F. S. and Itoh, H., “Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process”, Journal of Hazardous Materials, Vol. 136, pp. 663-670, 2006. 63.Lu, Ying., Gong, Z., Zhang, G. and Burghardt, W., “Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China”, Geoderma, Vol. 115, pp. 101-111, 2003. 64.Navas, A. and Lindhorfer, H., “Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain) ”, Environment International, Vol. 29, pp. 61-68, 2003. 65.Sawyer, C. N., McCarty, P. L. and Parkin, G. F., Chemistry for Environmental Engineering, 4th edition, McGraw-Hill, pp. 332-334, 1994. 66.Dell’Anno,A., Mei, M.L. Ianni, C. and Danovaro, R., “Impact of bioavailable heavy metals on bacterial activities in coastal marine sediments”, World Journal of Microbiology & Biotechnology, Vol. 19, pp. 93–100,2003. 67.Baruah, N. K., Kotoky, P. Bhattacharyya, K. G. and Borah, G. C., “Metal speciation in Jhanji River sediments”, The Science of the Total Environment, Vol. 193, pp. 1-12,1996. 68.Ryssen, R. V., Leermakers, M. and Baeyens, W., “The mobilisation potential of trace metals in aquatic sediments as a tool for sediment quality classification”, Environmental Science & Policy, Vol. 2, pp. 75-86,1999. 69.Doulakas, L., Novy, K., Stucki, S. and Comninellis. Ch., “Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution”, Electrochimica Acta, Vol. 46, pp. 349-356,2000. 70.Yang, C. C., “Recovery of heavy metals from spent Ni–Cd batteries by a potentiostatic electrodeposition technique”, Journal of Power Sources, Vol. 115 , pp. 352-359, 2003. 71.Elsherief, A. E., “Removal of cadmium from simulated wastewaters by electrodeposition on spiral wound steel electrode”, Electrochimica Acta, Vol. 48, pp. 2667-2673, 2003. 72.Oztekin, Y. and Yazicigil, Z., “Recovery of metals from complexed solutions by electrodeposition”, Desalination, Vol. 190, pp. 79-88, 2006 73.Röhrs, J., Ludwig, G. and Rahner, D.,“Electrochemically Induced Reactions in Soils—A New Approach to the In-Situ Remediation of Contaminated Soils: Part 2: Remediation Experiments with a Natural Soil Containing Highly Chlorinated Hydrocarbons”, Electrochimica Acta, Vol. 47, pp. 1405-1414, 2002. 74.Issabayeva, G., Aroua, M. K. and Sulaiman, N. M., “Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell”, Desalination, Vol. 194, pp. 192-201, 2006. 75.Guillaume, P., Leclerc, N., Lapicque, F. and Boulanger, C., “Electroleaching and electrodeposition of zinc in a single-cell process for the treatment of solid waste”, Journal of Hazardous Materials, 2007. 76.Nyer, E. K., Fam, S., Kidd, D. F., Palmcr, P. L., Bocttcheer, G. T., Crossman, L. and Suthersan, S. S., “In-Situ Treatment”, CRC Press, pp. 310-314, 1996. 77.Chen, G., “Electrochemical technologies in wastewater treatment”, Separation and Purification Technology, Vol. 38, pp. 11-41, 2004. 78.Tessier, A., Campbell, P. G. C. and Bisson, M., “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals”, Analytical Chemistry, Vol. 51, pp. 544-851, 1979. 79.Salim, I. A., Miller, C. J. and Howard, J. L., “Sorption isotherm-sequential extraction analysis of heavy metal retention in landfill liners”, Soil Sci. Soc. Am. J, Vol. 60, pp. 107-114, 1996. 80.Balasoiu, C. F., Zagury, G. J. and Deschênes, L., “Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition”, The Science of The Total Environment, Vol. 280, pp. 239-255, 2001. 81.Gemma, R., “Extraction procedure for the determination of heavy metal in contaminated soil and sediment”, Talanta, Vol. 46, pp. 449-455, 1997. 82.Lietz, W. and Galling, G., “Metals from sediments”, Water Research, Vol. 23,pp. 247-252, 1989. 83.Elliott, H. A., Liberti, M. R. and Huang, C. P., “Competitive Adsorption of heavy metals by soil”, Journal of Environmental Quality, Vol. 15, pp. 214-219, 1986. 84.Gerhardt, A., “Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions”, Water Air and soil pollution, Vol. 17, pp. 23-55, 1993. 85.Brenner, A., “ Electrodepostion of Alloys Principles and Practice”, Vol. 1, Academic Press, New York, 1963. 86.Borton, R. G., Clark, W. D. and Seeker, W. R., “Fate of metals in waste combustion system”, Combustion Science and Technology, Vol. 74, pp. 327-342, 1990. 87.Castrillejo, Y., Bermejo, M. R., Pardo, R. and Martinez, A. M., “Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides”, Journal of Electroanalytical Chemistry, Vol. 522, pp. 124-140, 2002. 88.Allongue, P. and Maroun, F., “Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications”, Current Opinion in Solid State and Materials Science, Vol. 10, pp. 173-181, 2006.
摘要: 過去國內垃圾處理對策,從70年代掩埋為主,演變至80年代焚化為主,一直到90年代資源回收再利用,使得垃圾妥善處理率已提昇至96年6月的99.76%。生垃圾更於96年起規定一律不准進掩埋場,須以焚化方式處理。國內的焚化飛灰,換算成每焚化1公斤垃圾,將產生約0.04公斤的飛灰;原始焚化飛灰經TCLP檢測結果顯示,重金屬鉛濃度比其它重金屬高出好幾倍,且不合格率更高達52.9%;底渣之再利用率約為40.9%,而飛灰仍以固化掩埋處理為主,但掩埋後固化體將因風吹雨淋而破壞,使得飛灰上重金屬會進而污染水體,故須進行生物有效性的探討。 基於國內推行零廢棄以及再利用的政策,本研究主要針對MSWI飛灰經電沈積法處理後資源化的探討。研究對象包括採集三種不同MSWI飛灰,簡稱Ash-A、-B、-C,並進行檢測分析飛灰在電沈積前後之TCLP、重金屬鍵結型態的變化以及生物有效性的探討。研究結果顯示,因Ash-A、-B之鉛在弱相態佔的比例最高,Ash-C則以銅之比例最高,使得在電沈積法作用下,Ash-A、-B之鉛及Ash-C之銅的去除率最高;而在生物有效性方面,三種飛灰之重金屬經過電沈積法作用後,電沈積灰之重金屬其生物危害性與原灰相比較皆有減少趨勢,而減少百分比Ash-A、-B以鉛分別為56.4%、76.1%最高,而Ash-C以銅93.2%最為明顯。另外在電沈積法的作用下,三種飛灰之氯鹽濃度皆有明顯的下降(18.9%→8.2%、16.0% →6.7%、2.3% →0.07% ),且電沈積灰皆通過TCLP標準值,顯示電沈積灰頗值得朝資源化再利用方向應用。在不同處理方式比較:電沈積法以及水萃電動力法處理飛灰,皆可通過TCLP法規標準;而重金屬總量之去除率則不顯著。
In the past years in Taiwan, the main way to deal with domestic wastes in the 1980's was landfill, in the 1990's was incineration, and in the 2000's was resource recycling and reuse. In June 2007, the proper treatment efficiency of domestic wastes was raised to 99.76%. From 2007, the environmental rule stated that domestic wastes can't be allowed to the landfill without any treatment, but must be dealt with incineration. According to EPA statistic in Taiwan, every 1.0 kg of MSWI (Municipal Solid Waste Incinerator) wastes incineration will produce about 0.04 kg of fly ash, and the original MSWI fly ash TCLP (Toxicity Characteristic Leaching Procedure) test results showed that heavy metal concentration of lead was several times higher than other heavy metals, which over the environmental standard limits was up to 52.9%, and the MSWI ash of reutilization efficiency was only about 40.9% in 2007, that the primary technology of disposal of MSWI fly ash was still solidification and landfill. This will make MSWI fly ash turn to the heavy metal of underwater pollution. Thus was the subject to the bioavailability study. Based on zero waste and reuse policy of domestic wastes, the study mainly treated MSWI fly ash by electrodeposition process. Including sampling of the three different MSWI fly ash was called Ash-A, -B, -C, and testing of TCLP,sequential extraction procedure and bioavailability study,the focus was before and after the electrodeposition process. The results showed that Ash-A and -B''s lead, Ash-C''s copper were in the weak phase of the highest proportion,so these heavy metals had the highest removal efficiency by electrodeposition process. Otherwise, on the bioavailability after the electrodeposition process, these heavy metals compared with the original fly ash which was reduced. The reducing percentage of Ash-A and -B''s lead was 56.4% and 76.1% respectively, and the Ash-C of Copper was 93.2%. In addition, the three ashes of the chloride concentration were significant decline (18.9% → 8.2%, 16.0% → 6.7%, 2.3% → 0.07%). The results showed that the lead of electrodeposition fly ash could pass TCLP standard limits, and the electrodeposition fly ash was worthful used as the resources. Comparing with several different treatment technology: electrodeposition process and water washing combined with electrokinetic process, both fly ash can pass TCLP standard limits, but the total removal efficiency of heavy metals in fly ash wasn't significant.
URI: http://hdl.handle.net/11455/5404
其他識別: U0005-1007200819250100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200819250100
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。