請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5412
標題: 複合性二氧化鈦/活性碳觸媒之光催化系統處理染料廢水之研究
Study on the Treatment of Dye Wastewater by Titanium Dioxide/Activated Carbon Composite Photocatalysts
作者: 李佳欣
Li, Chia-Hsin
關鍵字: composite catalyst
複合性觸媒
titanium dioxide
activated carbon
dye
二氧化鈦
活性碳
染料
出版社: 環境工程學系所
引用: 日本光觸媒製品論壇:光觸媒製品的濕式分解性能試驗法(JIS R 1703-2)。 呂宗昕、吳偉宏,奈米科技與二氧化鈦光觸媒,科學月刊,第376期,第72-76頁(2004)。 周開平、陳郁文,二氧化鈦光觸媒的應用-自潔建築材料,科學月刊,第395期,第66-69頁(2005)。 邱永亮譯,染料之合成與特性, 徐氏基金會(1975)。 邱永亮、魏盛德合譯,染色化學,徐氏基金會(1975)。 陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。 張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。 經濟部工業局,奈米標章產品之光觸媒抗污塗料驗證規範 (TN-005)。 賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程學系(2000)。 謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理架構及應用,科儀新知,第二十六卷,第六期,第39-51頁。 Arana, J., J. M. Dofia-Rodriguez, E. Tello Rendon, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon, and J. A. Navio, “TiO2 Activeation by Using Activated Carbon a Support Part II. Photoreactivity and FTIR Study,” Applied Catalysis B: Environmental, 44, pp. 153-160 (2003). Bedjat, I. and P. V. Kamat, “Capped Semiconductor Colloids, Synthesis and Photoelectrochemical Behavior of TiO2-capped SnO2 Nanocrystallites,” Journal of Physics and Chemistry, 99, pp. 9182-9188 (2005). Bhattacharyya, A., S. Kawi, and M. B. Ray, “Photocatalytic Degradation of Orange Ⅱ by TiO2 Catalysts Supported on Adsorbents,” Catalysis Today, 98, pp.431-439 (2004). Carp, O., C.L. Huisman, and A. Reller, “Photoinduced Reactivity of Titanium dioxide,” Progress in Solid State Chemistry, 32(1), pp. 331-337 (2004). Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon,” Journal of Molecular Catalysis A: Chemical, 228, pp. 293-298 (2005). Childs, L. P., and D. F. Ollis, “Is Photocatalysis Catalytic?” Journal of Catalysis, 66, pp. 383-390 (1980). Cordero, T., C. Duchamp, J. Chovelon, C. Ferronato, and J. Matos, “Influence of L-type Activated Carbons on Photocatalytic Activity of TiO2 in 4-chlorophenol Photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, 191, pp. 122-131 (2007). Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu, “Photocatalytic Decolorization of Wastewater Dyes,” Water Environment Research, 66, pp. 50-53 (1994). Daneshvar, N., D. Salari, and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2,” Journal of Photochemistry and Pohotbiology A: Chemistry, 162, pp. 317-322 (2004). Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, 93, pp. 341-357 (1993). Fu, P., Y. Luan and X. Dai, “Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity,” Journal of Molecular Catalysis A: Chemical, 221, pp. 81-88 (2004). Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at A Semiconductor Electrode”, Nature, 238, pp. 37-38 (1972). Gao, Y. and H. Liu, “Preparation and Catalytic Property Study of A Novel Kind of Suspended Photocatalyst of TiO2-Activated Carbon Immobilized on Silicone Rubber Film,” Materials Chemistry and Physics, 92, pp. 604-608 (2005). Garcia, J. C. and K. Takashima, “Photocatalytic Degradation of Imazaquin in An Aqueous Suspension of Titanium Dioxide,” Journal of Photochemistry Photobiology A Chemistry, 155(1-3), pp. 215-222 (2003). Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, 95, pp. 69-75 (1995). Jing, L., Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, and J. Sun, “Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and its Relationships with Photocatalytic Activity,” Solar Energy Materials & Solar Cells, 90, pp. 1773-1787 (2006). Legrini, O., E. Oliveros, and A. M. Braun, “Photochemical Processes for Water Treatment,” Chemical Reviews, 93(2), pp. 671-698 (1993). Li, Y., X. Li, J. Li, and J. Yin, “Photocatalytic Degradation of Methylene Orange by TiO2-coated Activated Carbon and Kinetic Study,” Water Research, 40, pp. 1119-1126 (2006). Livage, J., S. Doeuff, M. Henry, and C. Sanchez, “Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid,” Journal of Non-Crystalline Solids, 89, pp. 206-216 (1987). Mills, A. and S. L. Hunte, “An Overview of Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiolog, A: Chemistry, 108(1), pp. 1-35 (1997). Muruhanandham, M. and M. Swaminathan, “Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process,” Dyes and Pigments, 68, pp. 133-142 (2006). Nilsson, R., R. Nordlinder, U. Wass, B. Meding, and L. Belin, “Asthma, Rhinitis, and Dermatitis in Workers Exposed to Reactive Dyes,” British Journal of Industrial Medicine, 50, pp. 65-70 (1993). Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of Chemical Society of Japan, 58, pp. 2015-2022 (1985). Ollis, D. F., E. Pelizzetti, and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environmental Science and Technology, 25, pp. 1522-1529 (1991). Phadke, M. S., “Quality Engineering Using Robust Design,” Prentice Hall, p. 291 (1989). Riegel, G. and J. R. Bolton “Photocatalytic Efficiency Variability in TiO2 Particles,” Journal of Physics and Chemistry, 99(12), pp. 4215-4224 (1995). Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis,” Gratzel, M., Ed., Academic Press, New York (1983). Shu, H. Y., M. C. Chang, and H. J. Fan, “Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters,” Journal of Hazardous Materials B, 113, pp. 201-208 (2004). Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, 65, pp. 665-673 (1993). Tang, W. Z. and H. An, “UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,” Chemosphere, 31, No. 9, pp. 4150-4170 (1995). Terabe, K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide,” Journal of Materials Science, 29, pp. 1617-1622 (1994). Tryba, B., A. W. Morawski, and M. Inagaki, “Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water,” Applied Catalysis B: Environmental, 41, pp. 427-433 (2003). Turner, J. C. R., “An Introduction to The Theory of Catalytic Reactors,” Catalysis Science and Technology, 1, pp. 43-86 (1981). Yu, Z., D. Laub, M. Bensimon, and J. Kiwi, “Flexible Polymer TiO2 Modified Film Photocatalysts Active in the Photodegradation of Azo-dyes in Solution,” Inorganica Chimica Acta, 361, pp. 589-594 (2008). Yuan, R., J. Zheng, R. Guan, and Y. Zhao, “Surface Characteristics and Photocatalytic Activity of TiO2 Loaded on Activated Carbon Fibers,” Colloids and Surfaces A: Physicochemical Engineering Aspects, 254, pp. 131-136 (2005). Zhang, X., M. Zhou, and L. Lei, “Preparation of An Ag-TiO2 Photocatalyst Coated on Activated Carbon by MOCVD,” Materials Chemistry and Physics, 91, pp. 73-79 (2005). Zhang, X. and L. Lei, “Effect of Preparation Methods on the Structure and Catalytic Performance of TiO2/AC Photocatalysts,” Journal of Hazardous Materials, 153, pp. 827-833 (2008). Zhou, M., J. Yu, S. Liu, P. Zhai, and L. Jiang, “Effects of Calcination Temperatures on Photocatalytic Activity of SnO2/TiO2 Composite Films Prepared by an EPD Method,” Journal of Hazardous Materials, 154, pp. 1141-1148 (2008).
摘要: 本研究目的在於製備複合式二氧化鈦/活性碳觸媒,探討此系統光催化處理染料水溶液之分解效率與反應動力行為以及光觸媒與吸附劑之相互關係。 實驗結果顯示,以溶膠凝膠法自行製備二氧化鈦粉體,當四異丙烷氧化鈦、異丙醇及乙酸的莫耳數比為1:2:8,經500℃鍛燒90分鐘後可得到具最佳光催化活性之觸媒。由精密儀器分析可知,二氧化鈦之顆粒大小約為20 nm,結晶構造為銳鈦礦,零電荷點約為6.90;複合式光觸媒之比表面積值與活性碳的複合比例呈現正相關。由光催化實驗及觸媒沈降實驗結果得知,二氧化鈦與粉末狀活性碳的複合確實可促進光催化反應之進行且有助於提升觸媒沈降性,又以在中性環境沈降效果最佳。 應用複合式光觸媒處理亞甲基藍於鹼性系統有最佳之光活性,但用於降解染料Acid Yellow 17則是在酸性系統比中性或鹼性系統有較佳之光活性;當系統中觸媒添加量相同時,複合比例以PT60 (60 wt% TiO2-40 wt% PAC)有最佳的光催化效果;複合式光觸媒之降解效率隨著初始濃度增加而降低,以初始濃度75 mg/L有最大的降解量,相當於每克的複合式觸媒PT60可分解81.24 mg的染料Acid Yellow 17。實驗結果顯示光催化反應過程中吸附於觸媒表面的染料濃度皆低於觸媒的吸附飽和量,利用反應終止後進行脫附程序以修正光催化反應行為,可成功地簡化真實光催化反應行為之推求,且光觸媒對染料之分解及脫色反應皆符合簡化之Langmuir-Hinshelwood擬ㄧ階動力模式。
This study investigated the preparation of titanium dioxide/activated carbon composite catalysts, the photocatalytic degradation of dye wastewater, and the relationship between photocatalysts and adsorbents. TiO2 powders were obtained using sol-gel process under the design of the Taguchi's method. The best candidate for photodegradation is obtained under the condition of the molar ratio of titanium isopropoxide, isopropyl alcohol and acetic acid kept at 1:2:8, calcined at 500℃ for 90 min and then dried after mixing with an adequate amount of activated carbon in water solution for 30 min. X-ray powder diffraction patterns suggest that the grain size of TiO2 is about 20 nm and the crystal structure is mainly in anatase form. The pHZPC of titanium dioxide has been measured to be 6.90. The surface area of composite catalysts is proportional to the ratio of activated carbon synthesized. The synthesis of titanium dioxide and activated carbon is a great benefit to the degradation of dye wastewater and the settleability of catalysts. In the alkaline solution, better photodegradation efficiency of methylene blue is achieved than in the neutral or acidic solution. However, the best photodegradation of Acid Yellow 17 is taken place in the acid solution. As far as the component proportion of photocatalyst is concerned, PT60 (60 wt% TiO2-40 wt% PAC) has the best efficiency, and the photodegradation efficiency decreases with an increase in initial dye concentration. The results also clearly indicate the dye concentration adsorbed on the surface of the composite catalysts during the photocatalytic reaction is lower than the saturated adsorptive concentration in the dark. The kinetic behaviors have been successfully described in a simplified Langmuir-Hinshelwood model.
URI: http://hdl.handle.net/11455/5412
其他識別: U0005-1408200822202200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200822202200
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件完整紀錄
 
TAIR 相關文章
 
Citations:


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。