請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5414
標題: TiO2/Ti薄膜電極結合外部迴路光電催化程序還原銀離子之探討
TiO2/Ti Thin Film Electrode Combined External Circuit Photoelectrocatalytic Process for Reducing Silver Ions
作者: 高肇郎
Kao, Chao-Lang
關鍵字: Photoelectrocatalytic
Silver Recovery
出版社: 環境工程學系所
引用: 方鴻源、林宜鋒、賴冠麟、劉景杭、林建成、張文俊(2004),廢定影液銀金屬回收及廢液處理之研究,第十九屆廢棄物處理技術研討會論文摘要集,pp.3-13。 台灣經濟研究院資料庫,銀產品進口資料庫,http://tie.tier.org.tw。 申洋文、車雲霞 (1998),無機化學叢書,第八卷,鈦分類,北京:科學出版社。 吳怡玲 (2001),以化學氣相沈積法製備二氧化鈦光觸媒之研究,碩士論文,國立中興大學環境工程研究所。 林東峰 (1997),以TTIP經由化學氣相沉積法沉積二氧化鈦薄膜之探討,碩士論文,國立清華大學化學工程研究所。 邱琬婷 (2005),以銀、鉑改質二氧化鈦薄膜反應器之光催化活性研究,碩士論文,國立中興大學環境工程研究所。 洪昭南、郭有斌 (1999),以化學氣相沉積法成長半導體薄膜,化工技術,Vol. 7, Issue 1, pp.190-204。 翁林廷彬、簡正雄、李伯興、喬泰智(1993),廢棄物處理廢棄物程序回收洗相廢液及X光底片之銀之方法,中華民國第221834號發明/新型專利說明書。 張祖恩、蔣立中、盧幸成、楊婉琳、陳盈良、施百鴻、張益國(2003),照相廢液電解還原之研究,第十八屆廢棄物處理技術研討會論文摘要集。 郭木進 (1994),定影廢液中銀離子回收之研究,文化大學應用化學系碩士論文。 陳松興 (1978),異相催化反應,徐氏基金會。 趙鵬文 (1999),以UV/TiO2程序處理氣相中三氯乙烷之研究,碩士論文,國立中興大學環境工程學系。 賴保帆 (2000),以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所。 簡正雄(2004),含銀定影廢液回收技術評估(一),資源化產業資訊月刊,14期,經濟部工業局,http://www.iw-recycling.org.tw/iwepaper/資源化產業資訊~第14期.htm。 簡正雄(2004),含銀定影廢液回收技術評估(二),資源化產業資訊月刊,15期,經濟部工業局,http://www.iw-recycling.org.tw/iwepaper/資源化產業資訊~第15期.htm。 Adams, M.O. (2003), On-site gold refining of cyanide liquors by solvent extraction. Minerals Engineering, Vol.16, Issue 4, pp.369-373. Ajiwe V.I.E. and I.E. Anyadiegwu (2000), Recovery of silver from industrial wastes, cassava solution effects, Separation and Purification Technology, Vol.18, Issue 2, pp.89–92. An, T., G. Li, X. Zhu, J. Fu, G. Sheng and Z. Kun (2005), Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor, Applied Catalysis A:General, Vol.279, Issues 1-2, pp.247-256. Annapragada, R., R. Leet, R. Changrani and G.B. Raupp (1997), Vacuum Photocatalytic Oxidation of Trichloroethylene, Environmental Science and Technology, Vol.31, Issue 7, pp.1898-1901. Atik, M. and M.A. Aegerter (1992), Corrosion resistant sol-gel ZrO2 coatings on stainless steel, Journal of Non-Crystalline Solids, Vol.147-148, pp.813-819. Barbeni, M., E. Pramauro and E. Pelizzetti (1985), Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles, Chemosphere, Vol.14, Issue 2, pp.195-208. Bard, A.J. (1994), Integrated Chemical Systems, Chap 6, John Wiley & Sons, New York. Brinker, C. J. and G.W. Scherer (1985), Sol → gel → glass: I. Gelation and gel structure, Journal of Non-Crystalline Solids, Vol.70, Issue 3, pp.301-322. Brinker, C. J. and G.W. Scherer (1990), Sol-Gel Science, Academic Press, NewYork. Byrne, J.A. A. Davidson, P.S.M. Dunlop and B.R. Eggins (2002), Water treatment using nano-crystalline TiO2 electrodes, Journal of Photochemistry and Photobiology A: Chemistry, Vol.148, Issues 1-3, pp.365–374. Byrne, J.A. and B.R. Eggins (1998), Photoelectrochemistry of oxalate on particulate TiO2 electrode, Journal of Electroanalytical Chemistry, Vol.457, Issues 1-2, pp.61-72. Byrne, J.A., B.R. Eggins, W. Byers and N.M.D. Brown (1999), Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metals from waste waters, Applied Catalysis B: Environmental, Vol.20, Issue 2, pp.L85-L89. Carp, O., C.L. Huisman and A. Reller (2004), Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, Vol.32, Issues 1-2, pp. 33-177. Chang, H.L.M., H. You, Y. Gao, J. Guo, C.M. Foster, R.P. Chiarello, T.J. Zhang and D.J. Lam (1992), Structural Properties of Epitaxial TiO2 Films Grown on Sapphire (1120) by MOCVD, Journal of Materials Research, Vol.7, Issue.9, pp.2495-2506. Chatelut, M., E. Gobert and O. Vittori (2000), Silver electrowinning from photographic fixing solutions using zirconium cathode, Hydrometallurgy, Vol.54, Issues 2-3, pp.79-90. Chen, D. and A. K. Ray (2001), Removal of toxic metal ions from wastewater by semiconductor photocatalysis, Chemical Engineering Science, Vol.56, Issue 4, pp.1561-1570. Childs, L.P. and D.F. Ollis (1980), Is Photocatalysis Catalytic, Journal of Catalysis, Vol.66, Issue 2, pp.383-390. Davis, J.A. and J.O. Leckie (1978), Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, Journal of Colloid and Interface Science, Vol.67, Issue 1, pp.90-107. Davis, J.A. and J.O. Leckie (1980), Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions, Journal of Colloid and Interface Science, Vol.74, Issue 1, pp.32-43. Davis, J.A., R.O. James and J.O. Leckie (1978), Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes, Journal of Colloid and Interface Science, Vol.63, Issue 3, pp.480-499. Dean, J.A. (1973), Lange''s Handbook of Chemistry, 11th Ed., McGraw-Hill, New York. Dibble, D.A. and G.B. Raupp (1992), Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams, Environmental Science and Technology, Vol.26, Issue 3, pp.492-495. Dibble, L.A. (1989), Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated TiO2, Ph. D. Dissertation, Arizona State Univ. Doede, C.M. and C.A. Walker (1955), Photochemical Engineering, Chemical Engineering, Vol.62, Issue 2, pp.159-178. Doeuff, S., M. Henry, C. Sanchez and J. Livage (1987), Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid, Journal of Non-Crystalline Solids, Vol.89, Issues 1-2, pp.206-216. Egerton, T.A., M. Janus and A.W. Morawski (2006), New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate, Chemosphere, Vol.63, Issue 7, pp.1203-1208. Emeline, A.V., V.K. Ryabchuk and N. Serpone (2007), Photoreactions occurring on metal-oxide surfaces are not all photocatalytic Description of criteria and conditions for processes to be photocatalytic, Catalysis Today, Vol.122, Issues 1-2, pp.91–100. Finklea, H.O. (1988), Semiconductor Electrode, Elsevier Press, New York. Fourcade, F., T. Tzedakis and A. Bergel (2003), Electrochemical process for metal recovery from iodized silver derivatives in liquid/solid mixture: Experimental and theoretical approaches, Chemical Engineering Science, Vol.58, Issue 15, pp.3507-3522. Fox, M.A. and M.T. Dulay (1993), Heterogeneous Photocatalysis, Chemical Reviews, Vol.93, Issue 1, pp.341-350. Fujishima, A. and K. Honda (1972), Electrochemical photolysis of water at a semiconductor electron, Nature, Vol.238, Issue 5358, pp.37-38. Fuyuki, T., T. Kobayashi and H. Matsunami (1988), effects of small amount of water on physical and electrical properties of TiO2 films deposited by CVD method, The Electrochemical Society, Vol.135, Issue 1, pp.248-250. Gomathi Devi, L. and G.M. Krishnaiah (1999), Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy-azo-benzene using various heat treated TiO2 as the photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, Vol.121, Issue 2, pp.141-145. Gotić, M., M. Ivanda, A. Sekulić, S. Musić, S. Popović, A. Turković and K. Furić (1996), Microstructure of nanosized TiO2 obtained by sol-gel synthesis, Materials Letters, Vol.28, Issues 1-3, pp.225-229. Grätzel, M. (1983), Energy:Resources through Photochemistry and Catalysis, Acadamic Press Inc. Grätzel, M. (2001), Photoelectrochemical cells, Nature, Vol.414, Issue 6861, pp.338-344. Habibi, M.H., N. Talebian and J. Choi (2006), Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation, Thin Solid Films, Vol.515, Issue 4, pp.1461-1469. Hagfeldt, A., H. Lindström, S. Södergren and S.E. Lindquist (1995), Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients, Journal of Electroanalytical Chemistry, Vol.381, Issues 1-2, pp.39-46. Hass, G. (1952), Preparation, Properties and Optical Apllications of Thin Film of Titanium Dioxide, Vacuum, Vol.2, Issue 4, pp.331-345. He, C., X.Z. Li, N. Graham, and Y. Wang (2006), Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application, Applied Catalysis A: General, Vol.305, Issue 1, pp.54-63. He, C., Y. Xiong and X.H. Zhu (2002), A novel method for improving photocatalytic activity of TiO2 film: the combination of Ag deposition with application of external electric field, Thin Solid Films, Vol.422, Issues 1-2, pp.235-238. Hoffmann, M.R., S.T. Martin, W. Choi, and Bahnemann (1995), Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, Vol.95, Issue 1, pp.69-96. Huang, M., E. Tso, A.K. Datye, M.R. Prairie and M.B. Stange (1996), Removal of silver in photographic processing waste by TiO2-based photocatalysis, Environmental Science and Technology, Vol.30, Issue 10, pp.3084-3088. Hung, C.H. and B.J. Marinas (1997), Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films, Environmental Science and Technology, Vol.31, Issue 2, pp.562-568. Inagaki, M., Y. Nakazawa, M. Hirano, Y. Kobayashi and M. Toyoda (2001), Preparation of stable anatase-type TiO2 and its photocatalytic performance, International Journal of Inorganic Materials, Vol.3, Issue 7, pp.809-811. Janssen, L.J.J. and L. Koene (2002), The role of electrochemistry and electrochemical technology in environmental protection, Chemical Engineering Journal, Vol.85, Issues 2-3, pp.137-146. Jorge, S.M.A., J.J.D. Sene and A.D.O. Florentino (2005), Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode, Journal of Photochemistry and photobiology A: Chemistry, Vol.174, Issue 1, pp.71-75. Kamat, P.V. (1993), Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces, Chemical Reviews, Vol.93, Issue 1, pp.267-300. Kanki, T., H. Yoneda, N. Sano, A. Toyoda and C. Nagai (2004), Photocatalytic reduction and deposition of metallic in aqueous phase, Chemical Engineering Journal, Vol.97, Issue 1, pp.77-81. Kavan, L., J. Rattouský, M. Grätzel, V. Shklover and A. Zukal (2001), Mesoporous thin film TiO2 electrodes, Microporous and Mesoporous Materials, Vol.44-45, pp.653-659. Korman, C., D.W. Bahnemann and M.R. Hoffmann (1988), Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO and Desert Sand, Environmental Science and Technology, Vol.22, Issue 7, pp.798-806. Kosmulski, M. and E. Matijević (1992), Zeta potential of anatase (TiO2) in mixed solvents, Colloids and Surfaces, Vol.64, Issue 1, pp.57-65. Legan, R.W. (1982), Ultraviolet Light Takes on CPI Roles, Chemical Engineering, Vol.89, Issue 2, pp.95-100. Lewis, N.S. and M.L. Rosenbluth (1989), Theory of Semiconductor Materials-in Photocatalysis, (Eds., Serpone N. and E. Pelizzetti), John Wiley & Sons, New York. Li, C.H. Y.H. Hsieh, W.T. Chiu, C.C. Liu and C.L. Kao (2007), Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts, Separation and Purification Technology, Vol.58, Issue 1, pp.148-151. Li, J., L. Li, L. Zheng, Y. Xian and L. Jin (2006), Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method, Electrochimica Acta, Vol.51, Issue 23, pp.4942-4949. Li, J., L. Li, L. Zheng, Y. Xian and L. Jin (2007), Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue, Journal of Hazardous Materials, Vol.139, Issue 1, pp.72-78. Linsebigler, A.L., G. Lu and J.T. Yates Jr (1995), Photocatalysis on TiO2 surface: Principles, mechanism, and selected results, Chemical Reviews, Vol.95, Issue 3, pp.735-758. Liu, H., X.Z. Li, Y.J. Leng and W.Z. Li (2003), An Alternative Approach to Ascertain the Rate-Determining Steps of TiO2 Photoelectrocatalytic Reaction by Electrochemical Impedance Spectroscopy, Journal of Physical Chemistry B, Vol.107, Issue 34, pp. 8988–8996 Maron, S.H. and J.B. Lando (1974), Fundamentals of Physical Chemistry, Macmillan Publishing Co. Inc., New York. Mayo, M.J. and D.C. Hague (1993), Porosity-grain growth relationships in the sintering of nanocrystalline ceramics, Nanostructured Materials, Vol.3, Issues 1-6, pp.43-52. Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi and T. Akira (1985), Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder, Bulletin of the Chemical Society of Japan, Vol.58, Issue 7, pp.2015-2022. Ollis, D.F., E. Pelizzetti and N. Serpone (1991), Photocatalyzed Destruction of Water Contaminants, Environmental Science and Technology, Vol.25, Issue 9, pp.1522-1529. Palombari, R., M. Ranchella, C. Rol and G.V. Sebastiani (2002), Oxidative photoelectrochemical technology with Ti/TiO2 anodes, Solar Energy Materials and Solar Cells, Vol.71, Issue 3, pp.359-368. Pavlinic, S. and I. Piljac (1998), Electrolytic desorption of silver from ion-exchange resins, Water Research, Vol.32, Issue 10, pp.2913-2920. Peral, J. and D.F. Ollis (1992), Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde and m-Xylene Oxidation, Journal of Catalysis, Vol.136, Issue 2, pp.554-565. Pethkar, A.V., and K.M. Paknikar (2003), Thiosufate biodegradation-silver biosorption process for the treatment of photofilm processing wastewater, Process Biochemistry, Vol.38, Issue 6, pp.855-860. Prengle, H.W. and C.E. Mauk (1978), New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection, AICHE Symposium Series, Vol.74, pp.228-244. Radecka, M., M. Rekas, A. Trenczek-Zajac and K. Zakrzewska (2008), Importance of the band gap energt and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, Vol.181, Issue 1, pp.46-55. Radecka, M., M. Wierzbicka, S. Komornicki and M. Rekas (2004), Influence of Cr on photoelectrochemical properties of TiO2 thin films, Physica B: Condensed Matter, Vol.348, Issues 1-4, pp.160-168. Rajeshwar, K. (2002), Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry, (Eds., Allen J. Bard, Martin Stratmann, Stuart Licht), John Wiley & Sons, New York. Sampath, S., H. Uchida and H. Yoneyama (1994), Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide, Journal of Catalysis, Vol. 149, Issue 1, pp.189-194. Sclafain, A., L. Palmisano and M. Schiavello (1990), Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion, Journal of Physical Chemistry B, Vol.94, Issue 2, pp.829-832. Stumm, W. (1992), Chemstry of the Solid-Water Interface, John Wiley & Sons, New York. Syed, S., S. Suresha, L.M. Sharma and A.A. Syed (2002), Clean technology for the recovery of silver from processed radiographic films, Hydrometallurgy, Vol.63, Issue 3, pp.277-280. Szabó-Bárdos, E., H. Czili and A. Horváth (2003), Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface, Journal of Photochemistry and photobiology A: Chemistry, Vol.154, Issues 2-3, pp.195-201. Texier, I., J. Ouazzani, J. Delaire and C. Giannotti (1999), Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32, Tetrahedron, Vol.55, Issue 11, pp.3401-3412. The silver institute, world silver survey 2007 a sumary, http://www.silverinstitute.org The silver institute, world silver survey 2008 a sumary, http://www.silverinstitute.org Tresure, P.A. (2004), Silver electrowinning in the EMEW® cell, pp.1-16., http://electrowinning.com Troupis, A., A. Hiskia and E. Papaconstantinou (2003), Photocatalytic reduction-recovery of silver using polyoxometalates, Applied Catalysis B: Environmental, Vol.42, Issue 3, pp.305-315. Turner, J.C.R. (1981), An introduction to the theory of catalytic reactors, Catalysis Science and Technology, Vol.1, Springer – Verlag, Berlin, Germany, pp.43-86. Vamathevan, V., R. Amala, D. Beydoun, G. Low and S. McEvoy (2002), Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, Journal of Photochemistry and photobiology A: Chemistry, Vol.148, Issues 1-3, pp.233-245. Waldner, G., M. Pourmodjib, R. Bauer and M. Neumann-Spallart (2002), Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes, Chemosphere, Vol.50, Issue 8, pp.989-998. Wang, W.Y. and Y. Ku (2007), Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.302, Issues 1-3, pp.261-268. Yang C.C., and M.H. Tsai (2004), Photocatalytic treatment of acetic acid wastewater by nanostructure film of TiO2, International symposium on environmental nanotechnology, proceedings, Taipei, Taiwan, pp.269-274. Yang S., Y. Liu and C. Sun (2006), Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution, Applied Catalysis A: General, Vol.301, Issue 2, pp.284–291. Yang, J., S. Mei and J.M. Ferreira (2001), Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols, Materials Science and Engineering: C, Vol.15, Issues 1-2, pp.183-185. Yoldas, B.E. (1986a), Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters, Journal of Materials Science, Vol.21, Issue 3, pp.1087-1092. Yoldas, B.E. (1986b), Zirconium oxides formed by hydrolytic condensation of aikoxides and parameters that affect their morphology, Journal of Materials Science, Vol.21, Issue 3, pp.1080-1086. Yonezawa Y., N. Kometani, T. Sakaue and A. Yano (2005), Photoreduction of silver ions in a colloidal titanium dioxide suspension, Journal of Photochemistry and photobiology A: Chemistry, Vol.171, Issue 1, pp.1-8. Zafiriou, O.C., J.J. Dubien, R.G. Zepp and R.G. Zika (1984), Photochemistry of Natural Waters, Environmental Science and Technology, Vol.18, Issue 12, pp.358A-371A. Zepp, R.G. (1988), Factors Affecting the Photochemical Treatment of Hazardous Waste, Environmental Science and Technology, Vol.22, Issue 3, pp.256-257. Zouboulis, A.I. (1995), Silver recovery from aqueous streams using ion flotation, Minerals Engineering, Vol.8, Issue 12, pp.1477-1488.
摘要: 本研究利用常壓化學蒸氣沉降法製備奈米級TiO2/Ti光觸媒薄膜電極,並利用批式反應器以TiO2/Ti光觸媒薄膜電極為陽極,石墨為陰極以結合外部迴路及施加陽極偏壓,進行光催化及光電催化處理銀離子還原及醋酸之降解,於此系統中探討pH值、銀離子濃度、醋酸濃度、陽極偏壓等操作參數對銀離子還原及醋酸降解之影響,另藉由表面分析及電化學分析以瞭解TiO2/Ti光觸媒薄膜電極之特性。 經由SEM和XRD進行表面及晶體結構分析顯示:以常壓化學蒸氣沉降法製備TiO2/Ti光觸媒薄膜電極可獲得之晶體尺寸為30 nm,且晶型結構為銳鈦礦的TiO2光觸媒。當鍍膜時間為二小時,TiO2顆粒聚集情形較明顯。光應答試驗顯示:鍍膜六小時之TiO2/Ti光觸媒薄膜電極對365 nm的UV光光應答作用非常迅速,其光生電流密度可達7 μA/cm2。另外於結合外部迴路光催化及光電催化的實驗結果:在180 min光催化程序中,對於高濃度(1000 mg/ L)的銀離子還原效率可達70%;低濃度(108 mg/ L)的銀離子還原效率為93%,當照光時間延長至240 min,銀離子還原效率可達99.8%。在不同初始pH值條件下( 7、5、3),以pH 7時最有利於銀離子的光催化還原,而施加陽極偏壓對於銀離子還原效率是沒有幫助的;然而對醋酸降解方面則是有些微幫助(<10%)。 外部迴路設計可有效將光生電子導引到陰極表面,降低光陽極發生電子-電洞對再復合的機率,亦可避免貴金屬離子在觸媒表面沉積,發生觸媒毒化或光遮蔽效應,導致光利用率降低,並可提昇貴金屬的還原效率。
In this study, a nano-class TiO2/Ti thin-film electrode was made using the atmospheric pressure chemical vapor deposition (APCVD). The photoelectrocatalytic reaction system employed the TiO2/Ti thin film as anode and graphite rod as cathode. The electrode was combined with an external circuit and applied potential to study the efficiencies of silver ions reduction and acetic acid decomposition. The effects of pH, concentration of silver ions, concentration of acetic acid, applied potential, TiO2 surface analysis and electrochemical analysis. Results of SEM images and XRD patterns of the TiO2/Ti thin-film electrode surface show that the thin film electrode made using the APCVD method can be as thin as 30 nm with the TiO2 photoelectric catalyst in anatase crystal form. More obvious agglomeration of TiO2 particles was observed by APCVD with 2 hours sprayed times. , Results of the light response study show that the electrode has a rapid response time under UV irradiation, and generation of photocurrent density with 7 μA cm-2. Additionally, results of the photocatalytic studies using the electrode combined with an external circuit in the photoelectrical catalytic studies to reduce silver ions reveal that with a reaction time of 180 min, the photocatalytic process will reduce 70% of silver ions in high-concentrated solution (1000 mg/L as Ag+) and 93% silver ions in low-concentrated solution (108 mg/L as Ag+). When the irradiation time is extended to 240 min, the silver reduction efficiency is as high as 99.8%. The solution pH 7 is favorable to the photoelectrical reduction of silver while the anode bias does not benefit the silver reduction efficiency but favors the decomposition of acetic acid. However, the process decomposes less than 10% of acetic. The external circuit will transmit the photo-generated electrons to the cathode surface thus reducing the combination of electron and electronic holes at the anode surface. As the reduction of precious metals is concerned, the external circuit is capable of avoiding the metal deposition at the catalyst surface to cause catalyst poison or light shielding that are know to reduce the photo utilization efficiency.
URI: http://hdl.handle.net/11455/5414
其他識別: U0005-1412200804351200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1412200804351200


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。