Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5418
標題: 改質奈米碳管吸附水中BTEX之研究
A Study on the sorption of BTEX from water with purified carbon nanotubes
作者: 胡舒剴
Hu, Suh-Kai
關鍵字: Carbon nanotubes
奈米碳管
Adsorption
Benzene
Ethylbenzene
Toluene
p-Xylene
吸附

甲苯
乙苯
二甲苯
出版社: 環境工程學系所
引用: Agnihotri, S., Rood, M.J., Rostam-Abadi, M. (2005). "Adsorption equilibrium of organic vapors on single-walled carbon nanotubes" Carbon. 43(11):2379-2388. Bandow, S., Rao, A. M., Williams, K. A., Thess, A. Smalley, R. E. Smalley and Eklund, P. C. (1997). "Purification of Single-Wall Carbon Nanotubes by Microfiltration" J. Phys. Chem. B, Vol. 101, 8839. Barrett, E. P., Joyner, L. G. and Halenda, P. P. (1951). "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms." Journal of the American Chemical Society 73: 373-880. Belin, T. and Epron, F. (2005). "Characterization Methods of Carbon Nanotubes: A Review." Materials Science and Engineering B 119: 105-118. Boehm, H. P. (1994). "Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons." Carbon 32: 759. Chen, J. P. and Wu, S. (2004). "Acid/Base-Treated Activated Carbons: Characterization of Function Groups and Metal Adsorptive Properties." Langmuir 20: 2233-2242. Chen, W. Duan, L. Zhu,D. (2007) “Adsorption of Polar and Nonpolar Compounds to Carbon Nanotubes,” Environ. Sci. Technol. 41 8295-8300. Chin, C.J., Shih, L.C., Tsai, H.J., Liu, T.K.(2007). "Adsorption of o-xylene and p-xylene from water by SWCNTs. " Carbon 45, 1254-1260. Chingombe, P., Saha, B., Wakeman, R.J.(2005) "Surface modification and characterization of a coal-based activated carbon. ", Carbon, 43, 3132-3143. Coquay, P., Vandenberghe,R.E., De Grave,E., Fonseca,A., Piedigrosso, P. ,Nagy,J.B. (2002) "X-ray diffraction and Mossbauer characterization of an FeSiO2 catalyst for the synthesis of carbon nanotubes" J. Appl. Phys. 92 1286-1291. Cristina, M., Almeida, M., Boas, L.V.(2004). "Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC-FID: method validation. " J. Environ, Monit. 6, 80-88. Cui, J.,Wang, W. P.,You, Y. Z., Liu, C. and Wang, P. (2004) "Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization" Polymer ,Vol. 45, 8717-8721. Daifullah, A.A.M., Girgis, B.S.(2003) "Impact of surface characteristics of activated carbon on adsorption of BTEX. " Colloids Surf. A 214, 181-193. Datsyuk,V. Kalyva,M. Papagelis, K. Parthenios, J. Tasis, D. Siokou,A. Kallitsis, Galiotis, I. C. (2008) "Chemical oxidation of multiwalled carbon nanotubes"Carbon 46 833-840. Davis, W. M., Erickson, C. L. and Johnston, C. T. (1999). "Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group composition." Chemospher 38: 2913-2928. Davis, W. M., Erickson, C. L. and Johnston, C. T. (1999)."Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group composition." Chemospher 38: 2913-2928. Dresselhaus, M.S., G. Dresselhans, R. Saito(1995) "Physics of carbon nanotubes. "Carbon,. 33: p. 883. Ebbesen, T. W. and Takada, T. (1995) "Topological and sp3 defect structures in nonotubes" Carbon Vol. 33, 973-978. Eckenfelder, Jr. W.W.(1989). Industrial Water Pollution Control. Second ed., McGraw-Hill International Editions, Singapore. Fagan, S.B., A.G. SouzaFilho, J.O.G. Lima, J.M. Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus (2004) "1,2-Dichlorobenzene Interacting with Carbon Nanotubes". Nano Lett.,. 4(7): p. 1285-1288. Fagan, S.B., E.C. Girao, J.M. Filho, and A.G.S. Filho (2006) "First principles study of 1,2-dichlorobenzene adsorption on metallic carbon nanotubes". Int. J. Quantum Chem.,. 106(13): p. 2558-2563. Fanning, P. E. and Vannice, M. A. (1993). "A Drifts Study of the Formation of Surface Groups on Carbon by Oxidation." Carbon 31(5): 721-730. Gotovac, S., Yang, C.M., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.(2007)"Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. " J. Colloid Interf. Sci. 314, 18-24. Gregg, S. J. and Sing, K. S. (1967). "Adsorption area and porosity. "Academic press, London and New York. Grujicic, M. (2002). "An Atomic-scale Analysis of Catalytically-assisted Chemical Vapor Deposition of Carbon Nanotubes. " Materials Science and Engineering B94: 247-259. Haye, K. F. and Leckie, J. O. (1987). "Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface." Journal of Colloid Interface Science 115: 564-572. Haye, K. F. and Leckie, J. O. (1988). "Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface." Journal of Colloid Interface Science 125: 717-726. Hiura, H., Ebbesen, T. W., Tanigaki, K. and Takahashi, H. (1993). "Raman Studies of Carbon Nanotubes." Chem. Phys. Let. 202(6): 459-576. Hsu, S., Lu, C., (2007)."Modification of Single-walled Carbon Nanotubes for Enhancing Isopropyl Alcohol Vapor Adsorption from Air Streams. "Separation Science and Technology 42(12), 2751-2766. Iijima, S (1991) "Helical microtubules of graphitic carbon, " Nature (London), Vol. 354, 56. Karabulut, S., Karabakan, A, Denizli, A. and Yu¨ru¨m, Y. (2000) "Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals" Separation and Purification Technology, Vol. 18, 177-184. Koh,S.M. Dixon,J.B. Appl. (2001) " Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene"Applied Clay Science 18 111-122. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. (1985) "C60: buckminsterfullerene, "Nature, Vol. 318, 162. Li, Y. H., Wang, S., Luan, Z. (2003) "Adsorption of cadmium(Ⅱ)from aqueous solution by surface oxidized carbon nanotubes. " Carbon,Vol. 41, 1057-1062. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z. and Wu, D.(2003). "Adsorption of Fluoride from Water by Aligned Carbon Nanotubes." Materials Research Bulletin 38: 469-476. Liao, Q., Sun, J., Gao, L.(2008). "The adsorption of resorcinol from water using multi-walled carbon nanotubes. " Colloids Surf. A 312, 160-165. Liu, Z.J., Yuan, Z.Y., Zhou,W., Peng,L.M., Xu,Z.,(2001) "Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid" Phys. Chem. 3 2518-2521. Long, R. Q., Yang, R. Y. (2001). "Carbon nanotubes as superior sorbent for dioxin removal." J. Am. Chem. Soc. 123: 2058-2059. Lu, C. S., Chiu, H. (2006). "Adsorption of Zinc(II) from Water with Purified Carbon Nanotubes." Chemical Engineering Science 61:1138-1145. Lu, C., Chung, Y. L. and Chang, K. F. (2005). "Adsorption of Trihalomethanes from Water with Carbon Nanotubes." Water Research 39: 1183-1189. Lu, C., Chiu, H., Bai, H. (2007). " Comparisons of Adsorbent Cost for the Removal of Zinc (II) from Aqueous Solution by Carbon Nanotubes and Activated Carbon. " Journal of Nanoscience and Nanotechnology 7(4/5), 1647-1652. Lu, C., Liu, C. (2006). " Removal of Nickel (II) from Aqueous Solution by Carbon Nanotubes."Journal of Chemical Technology & Biotechnology, 81(12), 1932-1940. Lu, C., Su, F.(2007). "Adsorption of natural organic matter by carbon nanotubes. " Sep. Purif. Technol. 58, 113-121. Mehrdad ,F.,David, D.,Cedric,V.,Christian,L.(2008) "Monoaromatics removal from polluted water through bioreactors-A review" Water Research 42: 1325-1341. Merkulov, V. I. (2001). "Shaping Carbon Nanostructures by Controlling the Synthesis Process. " Applied Physics Letter 79:1178-1180. Morrill, L. G., Mahilum, B. C. and H., M. S., Eds. (1982). Sorption Degradation and Persistence.Ann Arbor Sci. Publishers. Michigan. USA. Odom, T.W., J.L. Huang, P. Kim, C.M. Lieber(1998) "Atomic structure and electronic properties of single walled carbon nanotubes. " Nature,. 391: p. 62. Ovejero, G.; Sotelo, J.L.; Romero, M.D.; Rodriguez, A.; Ocana, M.A.; Rodriguez, G.; Garcia, J.(2006) "Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. "Ind. Eng. Chem. Res., 45, 2206-2212. Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D. C., Bae, D. J., An, K. H.,Lim, Zhu, X. Y. and Lee, Y. H. (2001) "High yield purification of multi walled carbon nanotubes by selective oxidation during thermal annealing" Carbon,Vol. 39, 655-661. Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P. (2000) "Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes" Computational Materials Science,Vol. 17, 352-355 Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez Macias, F. J., Boul, P. J., Lu, A.H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E.,.Rao, A. M., Eklund, P. C.and Smalley, R. E. (1998) " Large-scale purification of single- wall carbon nanotubes: process, product, and characterization" Appl. Phys. A Vol. 67, 29-37. Satishkumar, B. C., Govindaraj, A., Mofokeng, J. Subbanna, G. N. and Rao, C. N. R. (1996) "Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes" J. Phys. B., Vol. 29, 4925-4934. Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J. (2006) "The biocompatibility of carbon nanotubes", Carbon 44 1034-1047. Smith, J. M., Van Ness, H. C. and Abbott, M. M. (1996). Introduction to Chemical Engineering Thermodynamics. McGrawHill, New York. Thomson, W. J. (2000). "Introduction to Transport Phenomena. " Prentice Hall PTR, New Jersey, USA. Tsang, S. C., Harris, P. J. F. and Green, M. L. H. (1993) "Thinning and opening of carbon nanotubes by oxidation using carbon dioxide" Nature, Vol. 362, 520-522. Wang, S.G., Liu , X.W., Gong , W.X., Nie , W., Gao , B.Y., Yue , Q.Y., Chem , J. (2007)." Adsorption of fulvic acids from aqueous solutions by carbon nanotubes " Technol. Biotechnol. 82 698-704. Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S.(2007). "Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption". J. Hazard. Mater. 146, 237-242. Wu, C.-H. (2006) "Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics". J. Hazard. Mater : p.doi:10.1016/j.jhazmat.2006.09.083 (In press). Yang, K. and B. Xing (2007) "Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water". Environ. Pollut.,. 145(2): p. 529-537. Yang, K., L. Zhu, and B. Xing (2006) "Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials". Environ. Sci. Technol.,. 40(6): p. 1855-1861. Yang, K., X. Wang, L. Zhu, and B. Xing (2006) "Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes". Environ. Sci. Technol.,. 40(18): p. 5804-5810. Yong, Z., Zhu, Z., Wang, Z., Hu, J., Pan, Q., (2007) "One-dimensional carbon nanotube–FexCy nanocrystal composite" Nanotechnology 18 105602. Zhu, Z.Z.,Wang, Z., Li, H.L. (2008) "Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation" Appl. Surf. Sci. 254 2934-2940. 李元堯(2003),21 世紀尖端材料-奈米碳管,化工技術期刊-奈米材料與應用專輯, Vol. 11,No. 3,140-159 鍾孟佳, "奈米碳管吸附水中腐植酸之研究", 國立中興大學 環境工程研究所碩士論文, 2005
摘要: 本研究藉由不同化學藥劑(HCl, H2SO4, HNO3及NaOCl)改質自備奈米碳管(carbon nanotubes,CNTs)吸附水中芳香環類有機溶劑苯(Benzene)、甲苯(Toluene)、乙苯(Ethylbenzene)、二甲苯(p-Xylene),合稱(BTEX)。奈米碳管經改質處理後,顯示其金屬催化劑與觸媒載體被移除,提高奈米碳管的開口率、增加表面活性位址,產生有利於吸附之官能基。其吸附結果顯示對BTEX吸附量分別為NaOCl>HNO3>H2SO4>HCl。經由改質後,CNTs表面的官能基增加且表面羧基(carboxylic groups)可促使BTEX上的π鍵有電子轉移現象增加之吸附機制。由批次吸附實驗顯示次氯酸鈉改質自備奈米碳管CNT(NaOCl)吸附BTEX之吸附量隨著溫度降低、離子強度上升而有增加的趨勢而pH影響不大。以Langmuir等溫吸附模式求出經由次氯酸鈉改質其最大吸附量為苯(118.49mg/g)、甲苯(140.73mg/g)、乙苯(357.28mg/g)、二甲苯(515.51mg/g)比未改質CNTs高出三倍,也高於粒狀活性碳(GAC)。 根據熱力學及動力學參數,求得次氯酸鈉改質自備奈米碳管符合一階動力且吸附量隨溫度下降而增加,屬於放熱反應。由再生吸脫附實驗結果顯示次氯酸鈉較硝酸有更好脫附效果,次氯酸鈉改質自備奈米碳管在吸附容量與脫附再生特性上均較次氯酸鈉改質商用奈米碳管及商用活性碳有較佳之表現。綜合以上研究結果,次氯酸鈉改質後之奈米碳管對於處理廢水中BTEX具有良好的應用潛力。
Carbon nanotubes (CNTs) were fabricated by the catalytic chemical vapor deposition method and oxidized by HCl, H2SO4, HNO3 and NaOCl solutions for enhancing benzene, toluene, ethylbenzene and p-xylene (BTEX) adsorption in an aqueous solution. The NaOCl-oxidized CNTs show the greatest enhancement in BTEX adsorption, followed by the HNO3-oxidized CNTs, and then the H2SO4-oxidized CNTs. The adsorption mechanism of BTEX via CNTs is mainly attributed to the π-π electron-donor-acceptor interaction between the aromatic ring of BTEX and the surface carboxylic groups of CNTs. The equilibrium amount of BTEX adsorbed on CNTs(NaOCl)(qe) increased with agitation speed, contact time, initial BTEX concentration and solution ionic strength but appeared no remarkable change with solution pH.The maximum adsorbed amounts of BTEX onto heated CNT(NaOCl) calculated by the Langmuir model at 25oC were (B:118.49mg/g, T:40.73mg/g, E:357.28mg/g, X:515.51mg/g) respectively,which were much higher than that onto commercially available granular activated carbon. The thermodynamic analysis, the adsorption of BTEX onto CNTs(NaOCl) is an exothermic and spontaneous process. A comparative study on the adsorption of BTEX among CNTs, CNT(NaOCl) and GAC showed that under the same conditions the CNT(NaOCl) possess superior adsorption capacities for of BTEX than the CNTs and GAC. The adsorption/desorption study indicated that the CNT(NaOCl) have better reversible adsorption performance than the commercially available CNT(NaOCl) and GAC. This suggests that the as-prepared oxidized CNTs are promising BTEX adsorbents and have good potential for BTEX removal in wastewater treatment.
URI: http://hdl.handle.net/11455/5418
其他識別: U0005-1607200821401600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200821401600
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.