請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5438
標題: 中部空氣品質保護區空氣污染物與心臟血管疾病、呼吸疾病日門診量或住院治療相關性之研究
Correlation of air pollutants with daily hospital admissions or hospitalizations for cardiovascular diseases and respiratory diseases in Taichung-Changhua-Nantou area,Taiwan .
作者: 李志慶
Lee, Chin-Ching
關鍵字: Air pollutants
空氣污染物
cardiovascular diseases
respiratory diseases
chronic obstructive pulmonary disease
time-series regression model
所有呼吸性疾病
心臟血管疾病
慢性阻塞性肺疾病
時間序列迴歸模式
出版社: 環境工程學系所
引用: 1. Anderson, H. R., Bremmer, S. A., Atkinson, R. W., Harrison, R. W., and Walters, S. (2001). “Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulfate.” Occup. Environ. Med., 58, 504-510. 2. Anderson, H. R., Ponce, L. A., and Bland, J.M. (1996). “Air pollution and daily mortality in London: 1987-1992.” British Medical Journal, 312, 665-669. 3. Barnett, A. G., Williams, G.. M., Schwartz, J., Best, T. L., Neller, A. H., Petroeschevsky, A. L., and Simpson, R. W.,(2006). “The effects of air pollution on hospitalizations for Cardiovascular Disease in elderly people in Australian and New Zealand cities.” Environmental Health Perspectives, 114:1018-1023. 4. Bowerman, B. L., and O’Connel, R. T. Forecasting and time series 1993. 5. Chang, C. C., Tsai, S. S., Hoa, S. C., and Yang, C. Y.(2005). “Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan.” Environ. Res., 98, 114-119. 6. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society (CEOHA-ATS)(1996). 7. Dab, W., Medina, S., Quenel, P., Mullec, Y. L., Tertre, A. L., and Thelot, B. (1996). “Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris.” J. Epidemiol. Comm. Health, 50(suppl. 1), S42-S46. 8. Dockery, D. W., Schwartz, J., and Spengler, J. D. (1992). “Air pollution and daily mortality:Associations with particulates and acid aerosols.” Environ. Res., 59, 362-373. 9. Dunsmuir, W. (1981). “Estimation for Stationary Time Series When Data Are Irregularly Spaced or Missing.” Applied Time Series Analysis, 2, 609-649. 10. EPA Australia (1998). “Effect of ambient air pollution on daily mortality in Melbourne 1991-1996.” 11. Filleul, L., Tertre, A. L., Baldi, I., and Tessiera, J-F. (2004). “Difference in the relation between daily mortality and air pollution among elderly and all-ages populations in southwestern France.” Environ. Res., 94, 249–253. 12. Goldberg, M. S., Burnett, R. T., Valois, M-F., Flegel, K., BailarⅢ, J. C., Brook, J., Vincent, R., and Radon, K. (2003). “Associations between ambient air pollution and mortality among persons with congestive heart failure.” Environ. Res., 91, 8-20. 13. Harvey, A. C., and Pierse, R. B. (1984). “Estimation Missing Observations in Economic Time Series.” J. American Statistical Association, 79, 125-131. 14. Hoek, G., Schwartz, J. D., Groot, B., and Eilers, P. (1997). “Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, The Netherlands.” Archives of Environmental Health, 52, 455-463. 15. Hosseinpoor, A. R., Forouzanfara, M. H., Yunesianb, M., Asgharic, F., Naienia, K. H., and Farhood, D. (2005). “Air pollution and hospitalization due to angina pectoris in Tehran,Iran: A time-series study.” Environ. Res., 99, 126-131. 16. Katsouyanni, K., Schwartz, J., Spix, C., Toulomi, G.., Zmirou, D., Zanobetti, A., Wojtyniak, B., Vonk, J. M., Tobias, A., Pönkä, A., Medina, S., Bachárová, L., and Anderson, H. R. (1996). “Short term effects of air pollution on health: a European approach using epidemiologic time series data: the APHEA protocol.” J. Epidemiol. Comm. Health, 50(Suppl 1), S12-S18 17. Kelsall, J. E., Samet, J. M., Zeger, S. L., and Xu, J. (1997). “Air pollution and mortality in Philadelphia, 1974-1988.” Am. J. Epidemiol., 146(9), 750-762. 18. McGiffin, P. B., and Murthy, D. P. (1980). “Parameter Estimation for Auto-Regressive Systems with Missing Observations.” International Journal of Systems Science, 9, 1021-1034. 19. G. Tyler Miller, Jr. (2005). “Environmental problems, their causes, and sustainability” Environmental Science: Working with the Earth, 436, Brooks/Cole. 20. Pope, C. A. Ⅲ, Schwartz, J., and Ransom, M. R. (1992). “Daily mortality and PM10 pollution in Utah Valley. ” Archives of Environmental Health, 47, 211-217. 21. Schwartz, J. (1997). “Air pollution and hospital admission for cardiovascular disease in Tucson.” Am. J. Epidemiol., 8(4), 371-377. 22. Schwartz, J., and Morris, R. (1997). “Air pollution and hospital admission for cardiovascular disease in Detroit, Michigan.” Am. J. Epidemiol., 146(9), 750-762. 23. Spix, C., Anderson, H. R., Schwartz, J., Vigotti, M. A., LeTertre, A., Vonk, J. M., Touloumi, G., Balducci, F., Piekarski, T., Bacharova, L., Tobias, A., Pönkä, A., and Katsouyanni, K.(1998).“Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of APHEA study results.” Archives of Environmental Health, 53(1), 54-64. 24. Sunyer, J., Ballester, F., Tertre, A. L., Atkinson, R., Ayres, J. G., Forastiere, F., Forsberg,B., Vonk, J. M., Bisanti, L., Tenías, J. M., Mdina, S., Schwartz, J., and Katsouyanni, K. (2003). “The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The APHEA-II study).” European Heart Journal, 24, 752-760. 25. Terry, W. R., Lee, J. B., and Kumar, A. (1986). “Time Series Analysis in Acid Rain Modeling: Evaluation of Filling Missing Values by Linear Interpolation.” Atmos. Environ., 20, 1941-1945. 26. Thurston, G. D., Ito, K., and Hayes, C. (1994). “Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: consideration of the role of acid aerosols.” Environ. Res., 65, 271-290. 27. Thurston, G. D., Ito, K., Kinney, P. L. and Lippmann, M. (1992). “A multi-year study of air pollution and respiratory hospital admissions in three New York State metropolitan areas: results for 1988 and 1989 summers.” Journal of exposure analysis and environmental epidemiology, 2, 429-450. 28. Touloumi, G.., Atsouyanni, K., and Zmirou, D. (1997). “Short term effects of ambient oxidants exposure on mortality: a combined analysis within the APHEA Project.” Am. J. Epidemiol., 146(2), 177-185. 29. Wang, T. W., Tam, W. S., Yu, T. S., and Wong, A.H.S. (2002). “Associations between daily mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, China.” Occup. Environ. Med., 59, 30-35. 30. Wilson, A. M., Wake, C. P., Kelly, T., and Salloway, J. C. (2005). “Air pollution, weather, and respiratory emergency room visits in two northern New England cities: an ecological time-series study.” Environ. Res., 97, 312-321. 31. Yang, Q., Chen, Y., Krewski, D., Burnett, R. T., Shi, Y., and McGrail, K. M. (2005). “Effect of short-term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary disease hospitalizations.” Environ. Res., 99, 99-105. 32. 九十四年空氣品質年報資料 33. 內政部戶政司人口密度及土地面積資料. 34. 行政院衛生署編印:國際疾病傷害及死因分類標準。 35. 行政院環境保護署空氣污染防制相關法規. 36. 林政綱等,(1995). 空氣污染,高立圖書有限公司。 37. 林茂文,(1992)。「時間數列分析與預測」,華泰書局,增訂版。 38. 徐榮男,(2004)。「高雄市空氣污染與呼吸疾病門診量」。碩士論文,輔英科技大學環境工程衛生研究所。 39. 國家衛生研究院:全民健康保險學術研究資料庫光碟資料譯碼本。 40. 張家豪,(2002)。「空氣污染與每日呼吸道疾病門診人數之研究」。碩士論文,東海大學環境科學研究所。 41. 許明傑,(2002)。「台中地區空氣污染與心肺疾病門診量之相關性研究」。碩士論文,中國醫藥學院環境醫學研究所。 42. 羅夢娜、黃文璋、沈世宏、方淑彗,(1989). 下雨及雨後空氣品質變化之時間序列分析研究. 行政院環境保護署,台北。
摘要: 本文乃探究中部地區2002-2004年每日空氣污染物濃度對於每日門診量及住院量之影響。以行政院環境保護署設置中部地區空氣品質監測站所測的之每日空氣污染物濃度(包括:O3、PM10、NO2、SO2、CO)及氣候變項值(包括:氣溫和露點溫度) 及中央健保局委託國家衛生研究院之健保抽樣檔案(包括:所有呼吸性疾病、心臟血管疾病、慢性阻塞性肺疾病),來探討空氣污染物濃度與心肺疾病門診量及及住院量之關係。資料分析利用時間序列迴歸模式進行相關探討,調整相關之干擾因素後並加入時間序列參數調整依變項的自相關性,再利用適合度指標選擇最佳模式,確定模式,最後得到空氣污染物增加量對心肺疾病門診量及住院量的相對危險性。 本研究結果顯示,累積效應及延遲效應之部分,空氣污染物和心肺疾病門診量之間有累積效應,較無明顯延遲效應,空氣污染物和心肺疾病住院量之間有累積效應及延遲效應。單污染物模式中,呼吸道疾病部分,全年齡呼吸性疾病門診量僅與SO2、NO2有關,六十五歲以上呼吸性疾病門診量除了與O3未達顯著性外,和PM10、SO2、NO2、CO皆有關,且其相對危險比高於全年齡呼吸性疾病門診量,證實老年人為易感受性族群,而在呼吸性疾病住院量部分,其全年齡與PM10、SO2、NO2、O3有關,六十五歲以上呼吸性疾病住院量僅與PM10有關;心臟血管疾病部分,全年齡心臟血管疾病門診量與SO2、NO2、CO有關,而六十五歲以上心臟血管疾病門診量與NO2、CO有關,住院部分僅SO2與全年齡心臟血管疾病門診量有關;慢性阻塞性肺疾病,只有SO2、NO2與門診量與住院量有關係。多污染物最佳模式中,在門診量部分,大部分疾病和SO2、NO2有顯著之關性,且最佳模式也為此兩個污染物;而在住院量部分,則較不一致,呼吸道疾病全年齡與六十五歲以上者分別與NO2、PM10為最佳顯著關係,心血管疾病不管是全年齡與六十五歲以上者皆與SO2為最佳模式,但是只有全年齡部分有達統計上顯著性,慢性阻塞性肺疾病在全年齡部分與NO2有顯著之關係,且為最佳模式。多污染物間的相互作用,因污染物彼此相互作用而使得相對危險比值降低,除了SO2較具獨立的相關性外,其餘的淨相對危險比都會因其他污染物的彼此相互作用而減低,甚至其影響由原來的顯著變為不顯著,此現象除反映多污染物對日門診量及住院量的影響並不獨立外,另亦受限於此五種污染物間彼此存在著正相關,而導致迴歸模式中共線性問題的產生。
Objective - To investigate the correlation of air pollutants with daily hospital admissions and hospitalizations for cardiovascular diseases and respiratory diseases in central area of Taiwan. Methods - Retrospective ecological study was employed. Time series of health outcome and environmental data were obtained for the period 2002-2004. Information from air pollution and meteorology were obtained from air monitoring stations administrated by the Taiwan Environmental Protection Agency. Five pollutants included PM10、SO2、O3、CO and NO2. Meteorology data had air temperature and dew point temperature. The data regarding cardiopulmonary diseases hospital admissions and hospitalizations were obtained from the National Health Research Institute (NHRI). The data were included all respiratory disease, chronic obstructive pulmonary disease (COPD), and cardiovascular disease (CVD). Data analyzed using time series multiple regression models to assess the relationships between the air pollutants and hospital admissions and hospitalizations after controlling for time trend, day of the week, weather (temperature and dew point temperature), lag effect and accumulate effect of air pollutants. Results – There were the lag and cumulative effects of air pollution to daily hospital admissions and hospitalizations for cardiovascular diseases and respiratory diseases. In the single pollutant models, for respiratory diseases on hospital admissions, there were significantly correlations with SO2 and NO2 and there were the significant results of increasing risk of death caused by air pollutants based on age, especially among over 65 years old. The findings of robust models using step-wise regression were showed that SO2 or NO2 had the greatest effect on hospital admissions of cardiovascular diseases or respiratory diseases. In the multi-pollutant models, if all the pollutants were include in the multi pollutant models, the risk ratios were lower and same P values were non-significant. In addition, the high inter-correlations between the five air pollutants may have caused multi-colinearity problems.
URI: http://hdl.handle.net/11455/5438
其他識別: U0005-2008200809581700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200809581700
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。