Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5465
標題: 奈米乳化液應用於新式永續性工程用液之研究
The application of nanoemulsion as a novel sustainable industrial fluid
作者: 林上傑
Lin, Shang-Jie
關鍵字: Metalworking fluids
金屬切削液
Nanoemulsion
Mineral oil
Vegetable oil
奈米乳化液
礦物油
植物油
出版社: 環境工程學系所
引用: 英文期刊與書籍 1.Aziz, A., Fountain J., Borden R., Genereux D. Permeability Reduction and Emulsified Soybean Oil Distribution in Aquifer Sediments: Experimental and Modeling Results, Marine, Earth and Atmospheric Sciences,2003. 2.Brown, W. L., Metalworking fluids. In Synthetic lubricants and high-performance functional fluids, 2nd ed., Rudnick, L. R., Shubkin, R.L., Ed. Marcel Dekker, Inc.: New York, NY., 1999,pp 625-668. 3.Bennett, E. O., The biology of metalworking fluids. Lubrication Engineering 1972, 28,237-247. 4.Becher, P., Emulsions:Theory and practice. 2nd ed., Reinhold, New York ,1966. 5.Battersby, N. S., The biodegradability and microbial toxicity testing of lubtricants-somerecommendations. Chemosphere 2000, 41, 1011-1027. 6.Bentz, J., Ellens, H., Szoka, F. C., Destabilization of phosphatidylethanolamine-containingliposomes: hexagonal phase and asymmetric membranes. Biochemistry 1987, 26, (8),2105-2016. 7.Bentz, J., Nir, S., Covell, D. G., Mass action kinetics of virus-cell aggregation and fusion.Biophysical Journal 1988, 54, (3), 449-462. 8.Childers, J. C., The chemistry of metalworking fluids. In Metalworking Fluids, First ed., Byers, J. P., Ed. Marcel Dekker, Inc., New York, 1994, pp 165-189. 9.Clayton, W., The theory of emulsion and their technical treatment . 4th ed., The Biskiston Co., New York ,1943. 10.Chen, S. H., Lin T. L., In Methods of Experimental Physics-Neutron Scattering, New York , 1986 , vol 2. 11.Chen, B. H., Miller, C. A. and Garrett, P. R., Dissolution of nonionic surfactant mixtures, Colloids and Surfaces A 183-185 (2001) 191-202. 12.Chang, S. C., Rihana, A., Bahrman, S., Gruden, C. L., Khijniak, A. I., Skerlos, S. J., Adriaens, P., Flow cytometric detection and quantification of mycobacteria in metalworking fluids. International Biodeterioration and Biodegradation 2004, 54, 105-112. 13.Chang, S. C., Rapid Detection and Enumeration of Mycobacteria in Metalworking Fluids:Technology Development and Validation. University of Michigan, Ann Arbor, Michigan, 2005. 14.Chang, S. C., Anderson, T. I., Bahrman, S. E., Gruden, C. L., Khijniak, A. I., Adriaens, P., Comparing recovering efficiency of immunomagnetic separation and centrifugation ofmycobacteria in metalworking fluids. Journal of Industrial Microbiology & Biotechnology2005, 32, (11-12), 629-638. 15.Chang, S. C., Adriaens, P., Nano-immunodetection and quantification of mycobacteria inmetalworking fluids. Environmental Engineering Science 2007, 24, (1), 58-72. 16.D''Cruz, O. J., Yiv, S. H., Uckun, F. M., GM-144, a novel lipophilic vaginal contraceptive gel-microemulsion. AAPS PharmSciTech 2001, 2, (2), E5. 17.D''Cruz, O. J., Yiv, S. H., Waurzyniak, B., Uckun, F. M., Contraceptive efficacy and safety studies of a novel microemulsion-based lipophilic vaginal spermicide. Fertil Steril 2001, 75,(1), 115-24. 18.D''Cruz, O. J., Uckun, F. M., Intravaginal toxicity studies of a gel-microemulsion formulationof spermicidal vanadocenes in rabbits. Toxicol Appl Pharmacol 2001, 170, (2), 104-12. 19.Forster, T., Von Rybinski, W., Wadle, A., Influence of microemulsion phases on the preparationof fine-disperse emulsions. Advances in Colloid and Interface Science 1995, 58, (2-3),119-149. 20.Förster, T., Schambil, F., von Rybinski, W., production of fine disperse and long-term stable oil-in-water emulsions by tje phase inversion temperature method. Journal of Dispersion Science and Technology 1992, 13, (2),183 - 193. 21.Gullapalli, R. P., Sheth, B.B., Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions, European Journal of Pharmaceutics and Biopharmaceutics 48 (1999) 233-238. 22.Griffin, W.C., J. Soc. Cosmetic Chemists 5 (1954) 249. 23.Griffin, W.C., Classification of surface-active agents by HLB, J. Soc. Cosmetic Chemists 1 (1949) 311-326. 24.Hill, E. C., Microbial infection of cutting fluids. Tribology International 1977, 49-54. 25.Hill, E. C., Hill, G. C., Biodegrable after use but not in use. Industrial Lubrication andTribology 1994, 46, (3), 7-9. 26.Hamouda, T., Myc, A., Donovan, B., Shih, A. Y., Reuter, J. D., Baker, J. R., Jr., A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity againstbacteria, enveloped viruses and fungi. Microbiol Res 2001, 156, (1), 1-7. 27.Hamouda, T., Baker, J. R., Jr., Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol 2000, 89, (3), 397-403. 28.Hamouda, T., Hayes, M. M., Cao, Z., Tonda, R., Johnson, K., Wright, D. C., Brisker, J., Baker, J. R. Jr., A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J Infect Dis 1999, 180, (6), 1939-49. 29.Holmberg, K., Jönsson B., Kronberg, B., Lindman, B., Surfactants and Polymers in Aqueous Solution, Wiley Press, England, 2002. 30.International Trade Center, W. T. O., 2007 World Machine Tool Output & Consumption Survey.In Gardner Publications, Inc.: 2007. 31.ILMA, The Independent Lubricant Manufacturers Association Report. Lubricants World 2000,(November Issue), 10. 32.Kreiss, K., Cox-Ganser, J., Metalworking fluid-associated hypersensitivity pneumonitis a workshop summary. American Journal of Industrial Medicine 1997, 32, 423-432. 33.Kao, T. F., Water Supply Engineering. Kao, T. F. Publisher: Tainan, Taiwan, p 273-275, (1987). 34.Lasic, D. D., Papahadjopoulos, D., Medical Applications of Liposomes. Elsevier Science, Inc.:Amsterdam, The Netherlands, 1998. 35.Lin , T. J., Effect of initial surfactant location on the viscosity of emulsions, J. Soc. Cosmet. Chem. 19 (1968) 683-697. 36.Lin, T. J., Low-surfactant emulsification, J. Soc. Cosmetic Chem. 30(1979) 167-180. 37.Lin, S. J., Hsu, H. C., Lin, Y. T., Chang, S.C. In Application of nanoemulsion to novelsustainable metalworking fluids, Wastewater Treatment Conference, Kao Hsiung, Taiwan,11.23.2007-11.24.2007, 2007, Chinese Institute of Environmental Engineering: Kao Hsiung,Taiwan, 2007. 38.Lobo, L. A., Wasan, D. T., Thin film stability and interfacial rheology of emulsion systems, in: Van, P.J.(Ed.), Food Emulsions and Foams:Theory and Practice, Vol.86, AIChE Symposium Series,(1990) 25-34. 39.Lindman, B., Wennerström H., Micelles : Amphiphile Aggregationin Aqueous Solution, Springer-Verlag, Heidelberg, 1980. 40.Mattsby-Baltzer, I., Sandin, M., Ahlstrom, B., Allenmark, S., Edebo, M., Falsen, E., Pedersen, K., Rodin, N., Thompson, R. A., Edebo, L., Microbial growth and accumulation in Industrial metal-working fluids. Applied and Environmental Microbiology 1989, 55, 2681-2689. 41.Myc, A., Vanhecke, T., Landers, J. J., Hamouda, T., Baker, J. R., Jr., The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia 2002, 155, (4), 195-201. 42.Moore, J. S., Christensen, M., Wilson, R. W., Mycobacterial contamination of metalworking fluids: Involvement of a possible new taxon of rapidly growing mycobacteria. American Industrial Hygiene Association Journal 2000, 61, 205-213. 43.Marszall, L., HlB of nonionic surfactants PIT and EIP method, in nonionic surfactants – physical chemistry, Marcel Dekker, Inc. New York and Basel , (1987) 493-594. 44.Michigan Nanotechnology lnstititute for Medicine and Biological Sciences---MNiMBS. 45.Mang, T., Ecological and cost-efficient solutions for metal cutting fluids and machine toollubrication. In Total Tribology: Engineering Lubrication and Wear Lifecycle, Sherrington, I.,Rowe,W. B.,Wood, R. J. K., Eds. Professional Engineering: London, 2002, pp 197-220. 46.Mason, G., Graves, S. M., Wilking, J. N., Lin, M. Y., Extreme emulsification: formation andstructure of nanoemulsions Condensed Matter Physics 2006, 9, (1), 193-199. 47.Mori, Y., Okastu Y, Tsujimoto Y. , Titanium Dioxide Nanoparticles Produced in Water-in-oil Emulsion. Journal of Nanoparticle Research 3: 219–225, 2001. 48.McNeil, P. L., Vogel, S. S., Miyake, K., Terasaki, M., Patching plasma membrane disruptionswith cytoplasmic membrane. J Cell Sci 2000, 113, (11), 1891-1902. 49.Marqusee, J. A. ,Ross J.. Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys. 80, 536 (1984), DOI:10.1063/1.446427 50.NMWR, Respiratory Illness in Workers Exposed to Metalworking Fluid Contaminated with Nontuberculous Mycobacteria- Ohio Year: 2001. 2002, 51, 349-352. 51.Rosen, M. J., Surfactants and interfacisl phenomena , 2nd ed., John Wiley & Sons, New York, (1989)304-337 52.Rossmoore, H. W., Brazin, J. G. In Control of cutting oil deterioration with gamma radiation,Proceedings of the 1st international Biodeterioration Symposium, Southampton, U.K., 9th-14th,September, 1968, Southampton, U.K., 1968. 53.Rossmoore, H. W., Holtzman, G. H., Kondek, L. In Microbial ecology with a cutting edge,Proceedings of the third international biodegradation symposium, London, U.K., 1976, Miles, J., Kaplan, A.M., Ed. Applied Science Publishers: London, U.K., 1976. 54.Rossmoore, L. A., Rossmoore, H. W., Metalworking microbiology. In Metalworking Fluids,Byers, J. P., Ed. Marcel Dekker, Inc.: New York, NY., 1994, pp 247-272. 55.Rossmoore, H. W., Microbiology of metalworking fluids: deterioration, disease, and disposal. Lubrication Engineering 1995, 51, 113-118. 56.Stephen, P. Beaudoin, P., 1995, Removal of Organic Films from Solid Surfaces Using Aqueous Solutions of Nonionic Surfactant s. 1.Experiments”, Ind. Eng.Chem. Res., pp. 3307-3317. 57.Skerlos, S. J., Adriaens, P., Hayes, K., Rihana, A., Kurabayashi, K., Takayama, S., Zimmerman, J., Zhao, F. In Challenges to achieving sustainable aqueous systems: A case study in metalworking fluids, In Proceedings of Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, 2001, Tokyo, Japan, 2001. 58.Shelton, B. G., Flanders, W. D., Morris, G. K., Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerging Infectious Disease 1999, 5,270-273. 59.Shinoda, K., Kunieda H., Phase properties of emulsions: PIT and HLB in encyclopedia of emulsion technology, Vol.1, P. Becher, MarcelDekker, Inc.,New York, (1983) 337-367. 60.Shinoda, K., Arai H., The effect of mixing of oils and of non-ionic surfactants on the phase inversion temperatures of emulsions, J. Colloid Interface Sci. 25 (1967) 396-400. 61.Shinoda, K., Saito H., Arai H., The effect of the size and the distribution of the oxyethylene chain lengths of non-ionic emulsifiers on the stability of emulsions, J. Colloid Interface Sci. 35 (1971) 624-630. 62.Shinoda K., Yoneyama T., Tsutsumi H., Evaluation of emulsifier blending, J. Disp. Sci. Technol. 1 (1980) 1-12. 63.Shinoda ,K., and Kunieda H., Phase properties of emulsions: PIT an HLB in encyclopedia of emulsion technology, Vol.1, P. Becher, MarcelDekker, Inc.,New York, (1983) 337-367 64.Sowada R., and Mc Gowan J.C.,: Calculation of HLB values, Tenside Surfactant Det. 29 Jahrgang, Heft 2,(1992) 109-113. 65.Sutton, P. M., Mishra, P. N., Waste treatment. In Metalworking fluids, Byers, J. P., Ed. MarcelDekker, Inc.: New York, 1994, Vol. 41, pp 367-393. 66.Selvaraju, S. B.; Khan, I. U. H.; Yadav, J. S., Biocidal Activity of Formaldehyde andNonformaldehyde Biocides toward Mycobacterium immunogenum and Pseudomonasfluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appliedand Environmental Microbiology 2005, 71, 542-546 67.Tant, C. O., Bennett, E. O., The isolation of pathogenic bacteria from used emulsion oils. Applied Microbiology 1956, 4, 332-338. 68.Tanford, C., The Hydrophobic Effect, 2nd, Wiley, New York,1980. 69.Todros, T. F., Surfactants, Academic Press : London, 1984. 70.Tadros, T., Izquierdo, P., Esquena, J., Solans, C., Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108-109, 303-318, (2004). 71.Vanlerberghe, G., Morancais, J. L., Niosomes in perspective. STP Pharma Sciences 1996, 6, (1),5-11. 72.Venn, G. S., Metal-working fluids and some of their environmental impacts. In Total Tribology:Engineering Lubrication and Wear Lifecycle, Sherrington, I., Rowe, W. B., Wood, R. J. K., Eds.Professional Engineering: London, 2002, pp 185-196. 73.Wallace, J. R. J., Zhang, Y., Wilson, R., Mann, L., Rossmoore, H. W., Presence of a single genotype of the newly described species Mycobacterium immunogenum in industrial metalworking fluids associated with hypersensitivity pneumonitis. Applied and Environmental Microbiology 2002, 68, 5580-5584. 74.Watt, W. D., Observations on the relationship between triazines and mycobacteria in metal removal fluids. Applied Occupational and Environmental Hygiene 2003, 18, 961-965. 75.Walstra, P., Formation of emulsions, in Encyclopedia of Emulsion Technology, Vol.1, basic theory, Becher P. eds, Marcel Dekker, Inc., New York,(1983)369-404. 76.Wilson, R. W., Steingrube, V. A., Bottger, E. C., Springer, B., Brown-Elliott, B. A., V., V., Jost, K. C. J., Zhang, Y., Garcia, M. J., Chiu, S. H., Onyi, G. O., Rossmoore, H. W., Nash, D. R., Wallace, J. R. J., Mycobacterium immunogenum sp., a novel species related to Mycobacterium abscessus and associated with clinical disease,pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. International Journal of Systematic and Evolutionary Microbiology 2001, 51, 1751-1764. 77.Xianguo, Hu, Selection and Application of Antimicrobials used for Metal Working Fluids,chemical industry and engineering programess vol.18 no.4,1999. 78.Wilmington, D.E., Atlas HLB System, A Time-saving Guide to Emulsifier Selection, third ed., Atlas Chemical Industries Inc., 1963, pp. 7-13 79.Yang, B., Han, Z. H., Thermal conductivity enhancement in water-in-FC72 nanoemulsionfluids. Applied Physics Letters 2006, 88, (26), 261914. 80.Zimmerman, J. B., Clarens, A. F., Hayes, K. F., Skerlos, S. J., Design of hard water stable emulsifier systems for petroleum- and bio-based semi-synthetic metalworking fluids. Environ Sci Technol 2003, 37, (23), 5278-88. 81.Zimmerman, J. B., Hayes, K. F., Skerlos, S. J., Influence of ion accumulation on the emulsionstability and performance of semi-synthetic metalworking fluids. Environ Sci Technol 2004, 38,(8), 2482-90. 中文書籍 1.李珍濤 (1995) 多元醇界面活性劑之過去與未來展望 化工資訊。 2.陳崇賢 (1996) 乳液概論 界面科學會誌。 3.歐靜枝編譯 (1992) 乳化溶化技術實務 復漢出版社印行。 4.王鳳英編譯 (1993) 界面活性劑的原理與應用 高立圖書有限公司。 5.趙承琛編著 (1990) 界面活性劑化學 復文書局。 6.趙承琛編著 (1991) 界面科學基礎 復文書局。 7.張有義、郭蘭生編譯,Duncan J Shaw 編著,(1997),膠體及界面化學入門,高立出版社,台北。 8.呂宗昕著(2003) 圖解奈米科技與光觸媒 商周出版社。 9.工研院化工所界面活性劑產業專題 (2003)。 10.黃世吉 (1997) 界面活性劑乳化精油之原理及應用 大葉大學食品工程研究所碩士論文。 11.賴碧玉 (2002) 乳液安定性控制因素 元智大學化學工程研究所碩士論文。 12.陳伸賢 (2007),地層下陷之防治與復育,台灣土壤及地下水 環境保護協會。 13.陳鴻泉,呂文賢,黃世傑,張凱茹 (2007),地下水污染生物整治法-慢性釋放營養劑在台灣之應用經驗,ERM Taiwan 永灃環境管理顧問股份有限公司。 網頁資料 1.http://www.feli.com.tw/nano/whatisnano.htm#tec2 何謂奈米? 。 2.http://nano.nsc.gov.tw/main/1/1_data.html 科技年鑑奈米網。 3.http://www.mmsonline.com.cn 2007年12月11日 工業潤滑技術。 4.http://61.218.58.238/pipxoops/modules/pip/templates/lbg2006/chapter/1-1.php石油情報網。 5.http://www.lancome.com.tw/_zh/_tw/ 蘭寇網頁內容。 6.http://www.tasgep.org.tw台灣土壤及地下水環境保護協會網站 7.http://www.sdnano.com/nano/metirealpaper.htm 奈米材料科技 。 8.http://elearning.stut.edu.tw/caster/3/no3/3-2.htm 掃描式電子顯微鏡。
摘要: 工業用液之環境績效改善,可概分為工業用液的設計,加工中的製程管理,與排放後廢水處理。如果以產品生命週期而言,愈上游之設計的改善愈有利於工業用液之永續管理績效。工業用液在多種工業製程中均受到微生物分解的影響,包括石油勘探,冷卻水系統,過濾系統,海水淡化和金屬加工過程。因此,相當多的資源和時間耗費於防止微生物生長,微生物繁殖也同時衝擊工業用液的完整性和功能性。工業用液中,金屬切削液擁有適合微生物大量生長的油水比率,極適合微生物生長。通常於金屬製程中,為了抑制微生物生長,必須加入殺菌劑,導致微生物產生抗藥性,使勞工暴露於高劑量的殺菌劑與格蘭氏陰性菌死亡後所釋放的內毒素。進而造成職場勞工的安全衛生顧慮,並且衝擊下游之廢水生物處理效率。 本研究工作的假說是以處於亞穩定狀態的奈米乳化顆粒所表現出高生物穩定性作為新式工業用液之構想為基礎,因此於製程中不需加入大量的殺菌劑。此外,在特定濃度範圍內,乳化顆粒將呈現高度乳化穩定性而不易分層;但經過稀釋並接觸到固體顆粒後,乳化之油顆粒將聚集增大。故於排放至廢水處理設施後,因濃度稀釋且有懸浮固體之雙重條件,將很容易被微生物所降解。本研究研發之兩種奈米乳化液,其原料是以廉價的工業用礦物油與市售大豆油,作為奈米乳化液中的油相。經乳化後,此兩種乳化液的油顆粒大小,直徑可達約10 nm,二者均為目前所知之全世界最小粒徑之礦物油與植物油在水中之乳化液。本研究將此兩種乳化液與市面上販售的兩種殺菌劑,進行細菌生長抑制效果之比較。本研究結果顯示一製程內生物穩定但製程後容易生物分解之新式永續性工程用液之構想是可行的。
The need for effective industrial water management requires better strategies for industrial fluid formulation, in-process fluid management, and end-of-life fluid management. The earlier the changes in its life cycle, the greater the benefit will be. Industrial fluids are subject to biodeterioration in a variety of industrial operations, including oil exploration, cooling water systems, filtration systems, desalination, and metalworking processes. Thus, resources and time have been expended to prevent microbial growth and consequential impacts on fluid integrity and functionality. Among these various industrial fluids, water-based metalworking fluid has been one of the most vulnerable fluids since it has suitable oil-to-water ratios for microbial proliferation. Therefore, biocide addition is inevitable and dosage elevation is required due to microbial resistance. Consequently, workers are exposed to high level of biocides and endotoxins released from killed Gram-negative bacteria. The working hypothesis of this study is that metastability of nanoemulsion will exhibit high emulsion stability and high biostability due to membrane disruption without adding any biocides. Nevertheless, nanoemulsion will be easily biodegraded when in wastewater treatment processes due to coalesce in diluted concentration range. In this study, with industrial-grade components, a novel and highly stable nanoemulsion with average mineral oil droplet diameters as small as 10 nanometers has been prepared through phase inversion temperature method and its biocidal effects were tested on Pseudomonas aeruginoasa (Gram negative) and Mycobacterium immunogenum (Gram positive). Side by side, two commercially available biocides, Kathon and Preventol, were also tested for their biocidal effects in phosphate buffer saline with two commercially available metalworking fluids. In pure cultures, this nanoemulsion successfully achieved a killing efficacy on Pseudomonas aeruginosa higher than 5 log decades and that on Mycobacterium immunogenum higher than 6 log decades within 15 minutes. In an equal-volume mixed culture, this nanoemulsion showed a killing efficacy on Pseudomonas aeruginosa and Mycobacterium immunogenum higher than 7 log decades within 15 minutes and 5 log decades within 30 minutes, respectively. These results suggest that such mineral oil nanoemulsion has high biocidal effects on bacteria comparable to commercially available biocides. A soybean oil nanoemulsion with droplet diameters less than 15 nanometers has also been prepared but showed insignificant biocidal effects on both bacteria. This result implied that, apart from the size of oil droplets, the molecular structures of oils and surfactant composition may have also contributed to their biocidal effects.
URI: http://hdl.handle.net/11455/5465
其他識別: U0005-2208200817270400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200817270400
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.