Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5470
標題: 應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源
Applying CMB receptor model to analyze the source apportionments of the ambient particulates in the coastal and urban areas in central Taiwan
作者: 許美華
Hsu, Mei-Hua
關鍵字: CMB
化學質量平衡受體模式
MRC
Individual Particle
質量重組
大氣微粒微觀形態
出版社: 環境工程學系所
引用: 參考文獻 1. Barker, D. R. and L. M. Diana, “Simple Method for Fitting Data When Both Variables Have Uncertainties,” The American Journal of Physics, Vol. 42, pp. 224-226 (1974). 2. Brook, J. R., T. F. Dann and R. T. Burnett, “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Locations,” Journal of the Air & Waste Management Association, Vol. 47, pp. 2-19 (1997). 3. Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen and G. M. Bailey, “Characterisation of Chemical Species in PM2.5 and PM10 Aerosols in Brisbane, Australia,” Atmospheric Environment, Vol. 31, pp. 3773-4785 (1997). 4. Chao, C. Y. and K. K. Wong, “Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition,” Atmospheric Environment, Vol. 36, pp.265-277 (2002). 5. Chellam, S., P. Kulkarni and M. P. Fraser, “Emissions of Organic Compounds and Trace Metals in Fine Particulate Matter from Motor Vehicles: A Tunnel Study in Houston, Texas,” Air and Waste Management Association, Vol. 55, pp.60-72 (2005). 6. Chen, S. J., L. T. Hsieh, C. C. Tsai and G. C. Fang, “Characterization of Atmospheric PM10 and Related Chemical Species in Southern Taiwan during the Episode Days,” Chemosphere, Vol. 53, pp. 29-41 (2003). 7. Chen, W. C., C. C. Wang and C. C. Wei, “An Assessment of Source Contributions to Ambient Aerosol in Central Taiwan,” Journal of the Air and Waste Management Association, Vol. 47, pp. 501-509 (1997). 8. Chen, K. S., C. F. Lin and Y. M. Chou, “Determination of Source Contributions to Ambient PM2.5 in Kaohsiung, Taiwan Using a Receptor Model,” Journal of the Air and Waste Management Association, Vol. 51, pp. 489-498 (2001). 9. Cheng, M. T. and Y. I. Tsai, “Characterization of Visibility and Atmospheric Aerosols in Urban, Suburban and Remote Areas,” The Science of the Total Environment, Vol. 263, pp.101-114 (2000). 10. Christina, P., T. Athanasios, K. Themistoklis and S. Constantini, “Trace Elements in Atmospheric Particulate Matter Over a Coal Burning Power Production Area of Western Macedonia, Greece,” Chemosphere Vol. 65, pp. 2233-2243 (2006). 11. Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004). 12. Colbeck, I and R. M. Harrison, “Ozone-econdary aerosol- visibility relationships in North-West England,” The Science of the Total Environment., Vol. 34, pp. 87-100 (1984). 13. Councell, T. B., D. Keau, L. Edwardr and C. Edward, “Tire-Wear Particles as a Source of Zinc to the Environment,” Environment Science Technology, Vol. 38, pp. 4206-4214 (2004). 14. Fang, G. C., C. N. Chang, Y. S. Wu, P. P. C. Fu, C. J. Yang, C. D. Chen and S. C. Chang, “Ambient Suspended Particulate Matters and Related Chemical Species Study in Central Taiwan, Taichung during 1998-2001,” Atmospheric Environment, Vol. 36, pp. 1921-1928 (2002). 15. Fang, G. C., Y. S. Wu, J. C. Chen, J. Y. Rau, S. H. Huang and C. K. Lin, “Concentrations of Ambient Air Particulates (TSP, PM2.5 and PM2.5-10) and Ionic Species at Offshore Areas Near Taiwan Strait,” Journal of Hazardous Materials, Vol. B132, pp. 269-276 (2006). 16. Gertler, A. W., D. A. Lowenthal and W. G. Coulombe, “PM10 Source Apportionment Study in Bullhead City, Arizona,” Journal of the Air and Waste Management Association, Vol. 45, pp. 75-82 (1995). 17. Gupta, A. K., K. Karar and A. Srivastava, “Chemical Mass Balance Source Apportionment of PM10 and TSP in Residential and Industrial Sites of an Urban Region of Kolkata, India,” Journal of Hazardous Materials, Vol.142, pp. 279-287 (2007). 18. Kim, K. H., J. H. Lee and M. S. Jang, “Metals in Airborne Particulate Matter From the First and Second Industrial Complex Area of Taejon City, Korea,” Environment Pollution, Vol. 118 , pp. 41-51 (2002). 19. Kim, K. H., G. H. Choia, C. H. Kang, J. H. Lee, J. Y. Kim, Y. H. Youn and S. R. Lee, “The Chemical Composition of Fine and Coarse Particles in Relation with the Asian Dust Events,” Atmospheric Environment, Vol. 37, pp. 753-765 (2003). 20. Lopez, J. M., M. S. Callen, R. Murillo, T. Garcı, M. V. Navarro, M. T. Cruz and A. M. Mastral, “Levels of Selected Metals in Ambient Air PM10 in An Urban Site of Zaragoza (Spain),” Environment Research, Vol. 99, pp. 58-67 (2005). 21. Lowenthal, D. H., R. D. Borys and B. W. Mosher, “Sources of Pollution Aerosol at Dye 3, Greenland,” Atmospheric Environment, Vol. 31, pp. 3707-3717 (1997). 22. Mori, I., N. Masataka, T. Toshifumi and Q. Hao, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263 (2003). 23. Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, pp. 815-822 (1990). 24. Ohta, S., M. Hori, S. Yamagata and N. Murao, “Chemical Characterization of Atmospheric Fine Particles in Sapporo with Determination of Water Content,” Atmospheric Environment, Vol. 32, pp. 1021-1025 (1998). 25. Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A. Cooper, T. G. Dzubay and R. L. Bennett, “Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” Journal of the Air and Waste Management Association, Vol. 38: 1392-1402. (1988). 26. Samara, C., “Chemical Mass Balance Source Apportionment of TSP in a Lignite-Burning Area of Western Macedonia, Greece,” Atmospheric Environment , Vol. 39, pp.6430-6443 (2005). 27. Schauer, J. J., “Evaluation of elemental carbon as a marker for diesel particulate matter,” Journal of Exposure Analysis and Environmental Epidemiology, Vol. 13, pp.443-453 (2003). 28. Shao, L., Z. Shi, T. P. Jones, J. Li, A. G. Whittaker and K. A. BeruBe, “Bioreactivity of Particulate Matter in Beijing Air: Results from Plasmid DNA Assay,” The Science of the Total Environment, Vol. 367 , pp.261-272 (2006). 29. Shaw, R. W. and H. Rodhe, “Non-Photochemical Oxidation of SO2 in Regionally Polluted Air During Winter,” Atmospheric Environment., Vol. 16, pp.2879-2888 (1982). 30. Shi, Z., L. Shaoa, T. P. Jonesb, A. G. Whittakerc, S. Lua, K. A. Berube, T. Hea and R. J. Richards, “Characterization of Airborne Individual Particles Collected in An Urban Area, a Satellite City and a Clean Air Area in Beijing, 2001,” Atmospheric Environment, Vol. 37, pp.4097-4108 (2003). 31. Smichowski, P., G. Polla, D. Gomez, A. Jose and A. C. Lopez, “A Three-step Metal Fractionation Scheme for Fly Ashes Collected in an Argentine Thermal Power Plant,” Fuel, Vol. 87 , pp.1249-1258(2008). 32. Srivastava, A. and V. K. Jain, “Seasonal Trends in Coarse and Fine Particle Sources in Delhi by The Chemical Mass Balance Receptor Model,” Journal of Hazardous Materials, Vol. 144, pp.283-291 (2007a). 33. Srivastava, A. and V. K. Jain, “A Study to Characterize The Suspended Particulate Matter in An Indoor Environment in Delhi, India,” Building and Environment, Vol. 42, pp.2046-2052 (2007b). 34. Taylor, S. R., “Abundance of Chemical Elements in The Continental Crust: A New Table,” Geochimicaet Cosmochimica Acta., Vol. 28, pp.1273-1285 (1964). 35. Tsai, Y. I. and M. T. Cheng, “Visibility and Aerosol Chemical Compositions Near the Coastal Area in Central Taiwan,” The Science of the Total Environment, Vol. 231, pp.37-51 (1999). 36. Tsai, Y. I. and M. T. Cheng, “Characterization of Chemical Species in Atmospheric Aerosols in a Metropolitan Basin,” Chemosphere, Vol. 54, pp. 1171-1181 (2004). 37. U.S. EPA, Receptor Model Technical Series Volume III: CMB7 User’s Manual. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-90-004. (1989). 38. U.S. EPA, Receptor Model Source Composition Library. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-85-002 (1984). 39. Wang, C. F., P. C. Chiang, M. T. Cheng and H. L. Chiang, “Improvement of Receptor Model Use in Analytical Aspect,” Atmospheric Environment, Vol. 41, pp.9146-9158 (2007). 40. Wang, Y. F., Y. I. Tsai, H. H. Mi, H. H. Yang and Y. F. Chang, “PM10 Metal Distribution in An Industrialized City,” Bull. Environ. Contam. Toxicol. , Vol. 77, pp.624-630 (2006). 41. Ward, T. J. and G. C. Smith, “The 2000/2001 Missoula Valley PM2.5 Chemical Mass Balance Study, Including the 2000 Wildfire Season—Seasonal Source Apportionment,” Atmospheric Environment , Vol. 39, pp.709-717 (2005). 42. Watson, J. G., J. C. Chow, Z. Lu, E. M. Fujita, D. H. Lowenthal and D. R. Lawson, “Chemical Mass Balance Source Apportionment of PM10 During The Southern California Air Quality Study,” Aerosol Science Technology., Vol. 21, pp.1-36 (1994a). 43. Watson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth and R. Robbins, “Differences in The Carbon Composition of Source Profiles for Diesel and Gasoline Powered Vehicles,” Atmospheric Environment. Vol. 28, pp.2493-2505. (1994b). 44. Watson, J. G., “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon (1979). 45. Watson, J. G., N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer and Q. Nguyen, “The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0,” Environmental Software, Vol. 5, pp. 38-49 (1990). 46. Watson, J. G., N. F. Robinson, C. Lewis, T. Coulter, J. C. Chow, E. M. Fujita, D. H. Lownethal, T. L. Conner, R. C. Henry and R. D. Willis, “Chemical Mass Balance Receptor Model Version 8 User’s Manual,” Desert Research Institute Document No. 1808.1D1 (1997). 47. Watson, J. G., J. C. Chow and T. G. Pace, Chemical Mass Balance. In: Hopke P. K. Eds. Receptor modeling for air quality management. pp. 83-116 (1991). 48. Yatkin, S. and A. Bayram, “Source Apportionment of PM10 and PM2.5 Using Positive Matrix Factorization and Chemical Mass Balance in Izmir, Turkey,” The Science of the Total Environment, Vol. 390 , pp.109-123 (2008). 49. Yue, W., X. Li, J. Liu, Y. Li, X. Yu, B. Deng, T. Wan, G. Zhang, Y. Huang, W. He, W. Hua, L. Shao, W. Li and S. Yang, “Characterization of PM2.5 in The Ambient Air of Shanghai City by Analyzing Individual Particles,” The Science of the Total Environment, Vol. 368 , pp.916-925 (2006). 50. 王秋森,行政院國家科學委員會,專題研究計畫「石化工廠產生的粒狀空氣污染物的受體模式之建立」研究計畫報告,NSC-83-0421-B-002-318Z,(1994)。 51. 楊宏隆,「大氣懸浮微粒PM2.5及PM2.5-10之特性及來源分析」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。 52. 台灣電力公司,「火力發電廠煙道氣粒狀物特性研究」,台灣電力公司八十七年度研究發展專題報告,(1998)。 53. 陳紀綸,「台中港地區大氣懸浮微粒污染來源分析」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。 54. 王景良,「中部空品區污染源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。 55. 鄭曼婷、程萬里、張艮輝、林沛練、莊秉潔、王竹方、郭崇義、林宗嵩、王重傑、黃景祥、白曛綾,「中部地區空氣污染總量管制技術資料建立與應用」,行政院環保署研究計畫報告,(2000)。 56. 行政院環保署,「中部地區懸浮微粒(PM10)污染事件成因分析計畫」,行政院環保署研究計畫報告,(2001)。 57. 彰化縣政府。彰化縣統計要覽,(2001)。 58. 國家圖書館。網址為http://twinfo.ncl.edu.tw,(2002)。 59. 賴沛君,「應用CMB受體模式分析懸浮微粒高污染事件之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2004)。 60. 鄭曼婷,「台中發電廠空氣中懸浮微粒受體模式推估」,財團法人台灣大電力研究試驗中心計畫報告,(2005)。 61. 郭崇義,「九十三年度彰化地區PM10懸浮微粒調查本分析及管制計畫」,彰化縣環境保護局,(2005)。 62. 蘇怡如,「台中都會區大氣懸浮微粒特性及農廢燃燒與沙塵暴的案例分析」,碩士論文,國立中興大學環境工程研究所,台中,(2006)。 63. 台中縣環境保護局94年度計畫,「94年度中部空品區氣象與污成因調查及改善策略研擬計畫」,台中縣環境保護局,(2007)。
摘要: 摘 要 本研究主要探討台灣中部沿海與都會地區的大氣懸浮微粒之化學組成,並利用化學質量平衡(CMB)受體模式解析懸浮微粒的污染來源及其貢獻量。都會地區的數據為採用2005年於中興大學量測大氣PM2.5(氣動直徑小於2.5 μm的微粒)及PM2.5-10(氣動直徑介於2.5 μm至10 μm的微粒)的濃度與化學組成的結果。沿海地區則採集2007年春季鹿港地區PM2.5及PM2.5-10的樣本,並分析其水溶性陰陽離子、含碳量及金屬元素濃度,再利用CMB受體模式解析微粒的污染來源及貢獻量,此外並進行大氣氣膠的微觀形態的樣本採樣,並利用電子顯微鏡分析微粒的外觀形態,以確認微粒的可能來源。 利用化學質量平衡受體模式分析沿海與都會地區的污染來源,結果顯示,沿海地區PM2.5主要的污染來源為二次氣膠(硫酸鹽與硝酸鹽)及農廢燃燒,都會地區則是交通排放與硫酸鹽。在PM2.5-10部份,沿海地區主要來源為地殼物質、交通排放與海鹽飛沫,都會區則是交通排放與地殼物質,故沿海及都會地區的PM10主要污染來源分別為二次氣膠和交通排放。 利用受體模式分析2005年農廢燃燒事件(11月25日~11月27日 )、大陸沙塵事件(11月29日)及冬季高污染事件(12月23日~12月25日),結果顯示在農廢燃燒事件時,細粒中的農廢貢獻與非事件日比較約增加9倍,沙塵暴事件時,粗粒中的地殼物質貢獻比非事件日約增加8倍,冬季高污染事件時,細粒中的交通及農廢污染貢獻比非事件日分別增加3倍及6倍,且其它污染源都有增加。 鹿港大氣微粒的電子顯微鏡照片顯示,大氣微粒主要有三類,分別為硫酸鹽微粒、街塵與塵土及交通排放微粒,與受體模式解析結果比對,顯示有類似的結果。
Abstract This study mainly investigated the chemical compositions of ambient particulates in the coastal and urban areas in central Taiwan, and applied chemical mass balance receptor model to analyze the source contributions. Both PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) and PM2.5-10 (particulate matter with aerodynamic diameter 2.5-10 μm) aerosols were collected for coastal area at Lukang site during spring 2007, whereas the samples were collected for the urban area at Chung Hsing site during 2005. For coastal site, the additional particle samples were also collected to be analyzed by using an electron microscope in order to identify the emission sources. Qualitative and quantitative analyses were performed by using chemical mass balance (CMB) model. The CMB modeling results showed that the major sources of PM2.5 included secondary aerosols and agricultural waste burning in the coastal area, whereas vehicle exhaust and ammonium sulfate were the dominant sources in the urban area. The significant sources of PM2.5-10 included crustal materials, vehicle exhaust and marine spray in the coastal area, yet vehicle exhaust, crustal materials were the major sources in the urban area. Therefore, the secondary aerosols and vehicle exhaust was the major source of PM10 in the coastal and urban area, respectively. The episodic events in 2005 were categorized as agricultural waste burning episodes (11/25~11/27), Asian dust storm events (11/29) and winter PM10 episode (12/23~12/25). The results showed that the contribution of agricultural burning in PM2.5 during the agricultural waste burning episodes was 6.2 times higher than that during non-episodes. During the Asian dust storm events, the crustal materials were the major contributory sources in PM2.5-10 and about 8 times higher than that during non-episodes. In winter PM10 episode, the vehicle exhaust and agricultural burning were the major contributory sources in PM2.5, and there were 3 and 6 times higher than those during non-episode, respectively. Furthermore, the other sources were also increased during the episodes. The scanning electron microscopic pictures of the individual particles sampled at Lukang site, showed three major types of sources. These particles were identified as sulfate, soil dust and vehicular emissions, which were similar to the results obtained by CMB receptor modeling.
URI: http://hdl.handle.net/11455/5470
其他識別: U0005-2307200813242300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2307200813242300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.