Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5495
標題: 自發性高溫好氧處理程序之研究:系統參數測定演算法之開發
DEVELOPING ALGORITHMS FOR THE DETERMINATION OF SYSTEM PARAMETERS ON THE AUTOTHERMAL THERMOPHILIC AEROBIC TREATMENT
作者: 吳勇興
Wu, Yeong-Shing
關鍵字: 自發性高溫好氧處理
autothermal thermophilic aerobic treatment
呼吸儀
生物反應動力學
生物反應熱
比生物潛熱
系統分析
respirometer
biological reaction kinetics
biological reaction heat
specific biological heat potential
system analysis
出版社: 環境工程學系
摘要: 自發性高溫好氧廢水處理程序(autothermal thermophilic aerobic treatment,簡稱ATAT)是一種能自發性達45 — 65 oC之生物好氧處理程序,與活性污泥程序(ASP)相較,具有降低過剩污泥與提高反應速率之優點,但在設計操作上,目前熱平衡及動力分析工具相當不足,本研究乃研發數學與實驗分析工具,探討比生物潛熱(hb,kcal/(g Ou))與系統動力參數測定方法,並利用呼吸儀實驗與實廠數據進行驗證。本研究開發三種動力演算法(algorithm)及二種生物潛熱演算法:(1)呼吸儀批次動力演算法,(2)呼吸儀系列稀釋(serial dilution)動力演算法,(3)呼吸儀圖譜(respirogram)圖解法,(4)呼吸儀比生物潛熱演算法,以及(5)實廠熱平衡模式演算法。 本研究首先以Monod動力模式為基礎,將傳統之攝氧圖譜(Ou vs. t)轉換為攝氧率對攝氧圖譜(OUR vs. Ou),推導兩相動力模式(2-phase model),據此開發出批次生物動力演算法,只需藉由一次批次實驗,即可求出四個Monod動力參數(mm, Yg, Ks, kd)、植菌濃度(Xo)、與初始基質濃度(So)。本研究以高濃度(10,000 mg/L COD)葡萄醣為基質,於55oC進行測試,結果顯示最大比生長速率(mm)為6.37 1/d,生長係數(Yg)為0.84 mg BOD of X/ mg BOD of S,半飽和係數(Ks)為82.3 mg/L BOD,衰減係數(kd)為0.44 1/d。 本研究另開發系列稀釋動力演算法,亦可適用於非Monod模式之求解,只需藉由一組不同基質濃度批次實驗,即可評比適用之動力模式(Haldane或Monod),並求解動力參數,而且亦可求解生物可降解率(bBOD/COD)。本研究以親水性有機酸para-hydroxy- benzoic acid (PHBA)為基質進行呼吸儀實驗,結果顯示生物可降解率(bBOD/ThOD)為1.38 mg BOD/ mg ThOD,淨生長係數(Yo)為0.16 BOD of X/BOD of S,並判斷為Michaelis-Menten模式,最大比基質降解率(km)為1.3 1/hr,半飽和係數(Ks)為12 mg/L BOD。推測bBOD/ThOD大於1 mg BOD/ mg ThOD之可能原因,為試驗中並未加入硝化抑制劑(TCMP),導致添加之營養鹽NH4Cl產生硝化作用所造成。 呼吸儀圖譜圖解法可求解動力參數外,亦可用於呼吸儀系統操作診斷。本研究經由評比不同植菌來源之葡萄糖/麩胺酸試驗(GGA test)發現:菌種來源與攪拌程度對於攝氧特性有密切關係,其他因素如菌種族群的多樣性、植菌之均質性(homogeneity)、與植菌夾帶基質殘留,都是植菌影響攝氧圖的可能因素。 本研究嘗試自行開發生物熱卡計(bio-colorimeter),可同時量測累積補熱(Hc vs. t)與攝氧數據(Ou vs. t),配合本研究開發之比生物潛熱演算法,可估測比生物潛熱。利用高濃度(10,000 mg/L COD)葡萄糖為基質,於55oC溫度進行測試,結果顯示比生物潛熱(hb)為51.4 kcal/(g Ou),比前人文獻值3.4 — 3.5 kcal/(g Ou)高出許多,且再現性甚差,變異係數(Cv)高達80%。進一步利用電腦模擬輔助設計(CAD)進行誤差分析,發現主要誤差來源為:補溫加熱棒加熱功率過高(100 W)、溫度測棒之精準度太低(±0.25oC)、開/關溫度控制方式(on/off control)不夠穩定(溫控頻率0.5 1/s太小)、氧氣測棒不適用於高溫操作(大於45oC),建議未來能針對這些缺失進行後續研究改善。 本研究最後開發一實廠熱平衡模式,可利用操作溫度(Tt)、進流水與出流水COD濃度(Si,COD, Se,COD)、曝氣槽與放流水污泥濃度(Xt,SS, Xe,SS),求取比生物潛熱(hb)。本研究以國內北部某一ATAT食品油脂廢水實廠六個月之監測數據進行個案探討。結果顯示由於生物反應熱率(Jb)提供主要熱源(89.1%),能將進流水由29oC自發性提升到48oC高溫反應,因此證實該廠實為ATAT操作。敏感度分析結果則顯示增加污泥停留時間(SRT)、氧傳效率(OTE)與進流水溫度(Tw)與濃度(Si,COD),皆會增加曝氣槽溫度(Tt)。當OTE為20%及SRT為30 d時,進流水濃度(Si,COD)至少要6,000 mg/L COD以上,才能維持45oC之ATAT操作。若要維持50oC以上之ATAT操作,進流水濃度(Si,COD)至少要9,000 mg/L COD以上。
The autothermal thermophilic aerobic treatment (ATAT) is a biological process in which the operating temperature can be maintained spontaneously at 45 — 65 oC. Comparing with the activated sludge process (ASP), the ATAT produces significantly less excess sludge yet proceed at higher reaction rate. However there is a need of developing evaluation tools for heat and kinetic analysis for the ATAT system. This study aims to develop mathematical and laboratory procedure for the determination of specific biological heat potential (hb, cal/(g Ou)) and kinetic parameters for the ATAT system. In order to verify these procedures, this study conducts respirometric tests and analyzes data collected from full-scale ATAT operation. Three kinetic algorithms and two hb algorithms are proposed for this study: (1) respirometric batch kinetic algorithm, (2) respirometric serial dilution kinetic algorithm, (3) respirometric graphical kinetic algorithm, (4) respirometric hb algorithm, and (5) full-scale hb algorithm. Based on the Monod kinetics, this study first develops a two-phase model for analyzing a batch OUR vs. Ou respirogram. An algorithm is then proposed to determine the four Monod kinetic parameters (mm, Yg, Ks, and kd) and the initial seed (Xo) and substrate (So) concentration. The algorithm is illustrated by a respirometric test on glucose of 10,000 mg/L COD at a temperature of 55oC. The result shows a maximal specific growth rate (mm) of 6.37 1/d, gross growth yield (Yg) of 0.84 mg BOD of X/mg BOD of S, half-saturation constant (Ks) of 82.3 mg/L BOD, and decay coefficient (kd) of 0.44 1/d for the ATAT system. This study also develops a respirometric serial dilution kinetic algorithm. The procedure requires only one batch test, using a series of substrate concentration (So) at the same seeding dosage (Xo). The algorithm can be used to determine for the type of kinetic model (Haldane vs. Monod) based on testing results with that the corresponding kinetic parameters can be assessed. In addition, the algorithm can determine a ratio of biodegradability (bBOD/ThOD) of the substrate. A test is conducted on para-hydroxybenzoic acid (PHBA) as the substrate at various concentrations. The result shows a biodegradability ratio (bBOD/ThOD) of 1.38 mg BOD/mg ThOD and observed growth yield (Yo) of 0.16 BOD of X/ BOD of S. It further determines that the Michaelis-Menten model is more appropriate with a km of 1.3 1/hr and Ks of 12 mg/L BOD. The bBOD/ThOD is greater than 1, which may be caused by the nitrification of NH4Cl being added as a nutrient for that nitrification inhibitor (TCMP) is not used. The graphical algorithm offers another solution for kinetic parameter estimation based on OUR vs. Ou respirograms, which can also be used for the diagnosis of respirometer tests. This study performs a respirometric test on glucose-glutamic acid (GGA) at three different seeding sources. The result shows that seeding source and the mixing intensity are two major factors affecting the pattern of respirogram. Other factors include the diversity of microbial consortium, the homogeneity of seeding, and the substrate residual carried over from seeding materials. This study attempts to develop a bio-calorimeter capable of simultaneous measuring of accumulative heat compensation data (Hc vs. t) and oxygen uptake data (Ou vs. t) so that the hb of a given substrate can be experimentally determined. A test is conducted on glucose of 10,000 mg/L COD, yielding an average hb of 51.4 kcal/(g Ou) with a large variation coefficient (Cv) of 80%. The estimated hb is much higher than the value of 3.4 — 3.5 kcal/(g Ou) reported by previous researchers. An analysis by computer aided design (CAD) program indicates that the errors are likely associated with high compensating heater power (100 W), poor precision of temperature probe (±0.25oC), less frequent on/off temperature control (0.5 1/s), and high operating temperature (> 45oC) making the oxygen sensor malfunction. It is suggested further study be made for improvement. For full-scale application, this study also develops a heat balance model for assessing hb and system analysis based on daily operating data of temperature (Tt), COD of influent (Si,COD) and effluent (Se,COD), biomass concentration (Xt,SS), and effluent solids (Xe,SS). A case study is analyzed using 6-month daily operating data of a full-scale ATAT plant located at north part of Taiwan. The plant was verified to be definitely autothermal for that the biological heat rate (Jb) was determined to be the major source (89.1%) for heating the influent at 29oC to the reaction temperature of 48oC. The result shows that increasing the sludge retention time (SRT), the oxygen transfer efficiency (OTE), and the influent temeperature (Tw) and concentration (Si,COD) can all increase the autothermal temperature (Tt). The analysis also indicates that, providing an oxygen transfer efficiency (OTE) of 20% and SRT of 30 d, the influent substrate should be at least 6,000 and 9,000 mg/L COD to maintain the operating temperature of 45oC and 50oC, respectively.
URI: http://hdl.handle.net/11455/5495
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.