請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5499
標題: 高溫好氧油脂分解菌動力參數研究
A Kinetic Parameter Study of a Thermophilic Aerobic System Treating High Strength Oily Wasterwaters
作者: 沈育資
Shen, Yu-Tzu
關鍵字: Thermophilics
高溫菌
reaction kinetic
Thermus sp.
Microbacterium sp.
反應動力
Thermus sp.
Microbacterium sp.
出版社: 環境工程學系所
引用: 吳永興 (2004) 自發性高溫好氧處理程序之研究:系統參數測定演算法之開發,博士論文,國立中興大學環境工程學研究所,臺中 李季眉 (1992) 環境微生物實驗,中興大學,臺中 胡苔莉 (1987) 微生物學實驗,國立編譯館,臺北 韓麗明,吳常豪 (1977) 工業廢水之理論、實務及處理,徐氏基金會,臺北 顏國欽 (1993) 食品油脂學(上),中興大學,臺中 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federaation (WEF) (1998) Standars for Examination of Water and Wastewater – Part 5210:Biochemical Oxygen Demand (BOD) Arpigny, J. L. and K. E. Jaeger (1999) “Bacterial lipolytic enzymes: classification and properties” Biochem J., 343:177-83 Ateslier, Z. B. B. and K. Metin (2006) “Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp.” Enzyme and Microbial. 38:628-635 Baker, H., O. Frank, I. Pasher, B. Black, SH. Hutner, and H. Sobotka(1960)“Growth requirements of 94 strains of thermophilic bacilli” Can J Microbiol 6:557-63 Becker, P., D. Köster, M. N. Popov, S. Markossian, G. Antranikian, and H. Märkl (1999) “The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions” Wat. Res. 33:184-190 Becker, P., I. A. Reesh, S. Markossian, G. Antranikian, and H. Märkl (1997) “Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil” Appl. Microbiol. and Biotechnol., 48:184-190 Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno (1996) “Isolation of Thermus strains from hot composts (60 to 80 degrees ℃)” Appl. Environ. Microbiol. 62:1723-7 Bérubé, P. R. and E. R. Hall (1999) “Treatment of evaporator condensate using a high temperature membrane bioreactor:determination of maximum operating temperature and system costs In: Proceedings of TAPPI 1999 International Environmental Conference” 769–80 Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, and R. G. J. M. Lans (1990) “Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles:A case study related to the microbial desulfurization of coal” Biotechnol. Bioeng. 35:1111-1119 Brock, T. D. (1986) “Thermophiles : general, molecular, and applied microbiology” John Wiley Inc. Brock, T. D. and H. Freeze (1969) “Thermus aquaticus gen. N. and sp. N., a non-sporulating extreme thermophile” J. Bacteriol. 98:289-297 Brown, S. C., C. P. L. Grady, H. H. Tabak (1990) “Biodegradation kinetics of substituted phenolics: Demonstration of a protocol based on electrolytic respirometry” Wat. Res. 24:853-861 Campbell, L. L. and O. B. Williams (1953) “The effect of temperature on the nutritional requirements of facultative and obligate thermophilic bacteria” J. Bacteriol. 65:141-5 Chen, S. J., C. Y. Cheng, T. L. Chen (1998) “Production of an alkaline lipase by Acinetobacter radioresistens” J. Fermentat. Bioeng. 86: 308-312 Couillard, D. and S. Zhu (1993) “Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery” Environ. Pollut. 79: 121-126 Couillard, D., S. Gariépy, and F. T. Tran (1989) “Slaughterhouse effluent treatment by thermophilic aerobic process” Water Res., 23:573-579 Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor” Proc. Biochem. 40:1125-1129 Domínguez, A., P. Fuciños, M. L. Rúa, L. Pastrana, M. A. Longo, and M. A. Sanromán (2007) “Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp.” Enzy. and Micro. Technol. 40:187-194 Droste, R. L. (1997) “Theory and practice of water and wastewater treatment” John Wiley Inc. Elia, J. D. and W. Chesbro (1992) “Maintenance energy demand affects biomass synthesis but not cellulase production by a mesophilic Clostridium” J. Indus. Microbiol. Biotechnol. 10:123-133 Gabriel, B. (1994) “Wastewater microbiology” Wiley-Liss Gokulakrishnan, S. and S. N. Gummadi (2006) “Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182” Proc. Biochem. 41:1417-1421 Grady, C. P. L., B. F. Smets, D. S. Barbeau (1996) “Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology” Wat. Res. 30: 742-748 Grady, C. P. L., J. S. Dang, and D. M. Harvey (1989) “Determination of biodegradation kinetics through use of electrolytic respirometry” Wat. Sci. Tech. 21:957-968 Huber, H., M. Thomm, H. Konig, G. Thies, and K.O.Stetter (1982) “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen” Arch. Microbiol. 132:47-50 Jaeger, K. E. and T. Eggert (2002) “Lipases for biotechnology” Curr. Opin. in Biotechnol. 13:390-397 Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent” Arch. Microbiol. 136:254-261 Jurado, A. S., A. C. Santana, M. D. A. Costa, V. M. C. Madeira (1987) “Influence of divalent cations on the growth and morphology of Bacillus stearothermophilus” J. Gener. Microbiol. 133:507-513 Juteau, P. (2006) “Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste” Live. Sci. 102:187-196 Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet (2004) “Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste” Appl. Microbiol. Biotechnol. 66:115-122 Kabrick, R. M. and W. J. Jewell (1982) “Fate of pathogens in thermophilic aerobic sludge digestion” Wat.Res. 16:1051-1060 Krahe, M., G. Antranikian, and H. Markl (1996) “Fermentation of extremophilic microorganisms” FEMS Microbiol. Rev. 18:271-285 Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR)” Chemosphere 65: 1204-1211 Lang, N. L. and S. R. Smith (2008) “Time and temperature inactivation kinetics of enteric bacteria relevant to sewage sludge treatment processes for agricultural use” Wat. Res. 42:2229-2241 LaPara, T. M. and J. E. Alleman (1999) “Thermophilic aerobic biological wastewater treatment” Wat. Res. 33:895-908 Madigan, M. T. and J. M. Martinko (2006) “Brock biology of microorganisms” 11th ed., Pearson Prentice Hall Inc. Malladi, B. and S. C. Ingham (1993) “Thermophilic aerobic treatment of potato-processing wastewater” W. J. Microbiol. Biotechnol. 9:45–49 McKee, T. and J. R. McKee (2003) “Biochemistry, The molecular basis of life” 3rd ed., McGraw-Hill Inc. Metcalf and Eddy (1991) “Wastewater engineering : treatment, disposal, and reuse” 3rd ed., McGraw-Hill Inc. Mohaibes, M. and H. H. Tanski (2004) “Aerobic thermophilic treatment of farm slurry and food wastes” Bioresour. Technol. 95:245-254 Mosley, G. A., G. L. Card, W. L. Koostra (1976) “Effect of calcium and anaerobiosis on the thermostability of Bacillus stearothermophilus” Can. J. Microbiol. 22:468-74 Rittmann, B. E. and P. L. McCarty (2001) “Environmental biotechnology:principles and applications” 2nd ed., McGraw-Hill Inc. Rowe, J. J., I. D. Goldberg, R. E. Amelunxen (1975) “Development of defined and minimal media for the growth of Bacillus stearothermophilus” J. Bacteriol. 124:279-84 Rozich, A. F. and K. Bordacs (2002) “Use of thermophilic biological aerobic technology for industrial wastewater treatment” Wat. Sci. Tech. 46:83-89 Rudolfs, W. and H. R. Amberg (1953) “White water treatment V. aeration with nonflocculent growths” Sewage Ind. Wast. 25:70-78 Rusch, A., E. Walpersdorf, D. Debeer, S. Gurrieri, and J. P. Amend (2005) “Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy” Chem. Geol. 224:169-182 Russell, J. B. and G. M. Cook (1995) “Energetics of bacterial growth: balance of anabolic and catabolic reactions” Microbiol. Rev. 59:48-62 Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa (2000) “Complete decomposition of biological waste sludge by thermophilic aerobic bacteria” Wat. Sci. and Technol. 42:81-88 Sharp, R. J., P. W. Riley, and D. White (1992) “Heterotrophic thermophilic Bacilli” CRC Press. Inc. Shiota, N., A. Akashi, and S. Hasegawa (2002) “A strategy in wastewater treatmentprocess for significant reduction of excess sludge production” Wat. Sci. and Technol. 45:127-134 Smets, B. F., A. R. Jobbagy, M. Cowam, and C. P. L. Grady (1996) “Evaluation of Respirometric Data: Identification of Features That Preclude Data Fitting with Existing Kinetic Expressions” Ecotoxicol. Environ. Safety 33:88-99 Stähl, S. and C. Ljunger (1976) “Calcium uptake by Bacillus stearothermophilus: a requirement for thermophilic growth” FEBS Lett 63:184-7 Sűrűcű, M. H., E. S. K. Chian, and R. S. Engelbrecht (1976) “Aerobic thermophilic treatment of high strength wastewaters” Journal of the Water Pollution Control Federation 48:669-679 Ugwuanyi, J. O., L. M. Harvey, and B. McNeil (2005) “Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste” Bioresource Technol. 96:707-719 Ugwuanyi, J. O., L. M. Harvey, and B. McNeil (2008) “Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation” Biores. Technol. 99:3279-3290 US EPA (1992) “Control of pathogens and vector attraction in sewage treatment” EPA/625/R-92/013 Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007) “Landfill leachate treatment using thermophilic membrane bioreactor” Desalination 204:8-16 Vogelaar, J. C. T., A. Klapwijk, J. B. V. Lier, and W. H. Rulkens (2000) “Temperature effects on the oxygen transfer rate between 20 and 55℃” Wat. Res. 34:1037-1041 Yao, C., S. Tang, Z. He, and X. Deng (2005) “Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelle” J. Molecular Catalysis B: Enzymatic 35:108-112 Yilmaz, T., A. Yuceer, and M. Basibuyuk (2008) “A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater” Bioresource Technol. 99:156-163
摘要: 摘 要 本研究以桃園縣觀音工業區某食品公司的高溫油脂污泥為菌種來源,經實驗室以小規模反應槽長期馴養後,利用純種培養技術分離純化菌株,並委託某生物科技公司將其基因序列定序,將定序結果上NCBI網站比對可能菌株,並對照傳統微生物鑑定實驗結果以確認菌株。確認菌株後,以橄欖油做為基質,利用不同基質濃度的批次實驗,探討高溫油脂分解菌的反應動力,並以實驗所得結果比對文獻中的微生物生長動力模式,探討可用於評估高溫好氧油脂分解菌的反應動力模式。 純種培養所分離純化的兩株菌,將菌種基因序列定序結果上NCBI網站比對,並與傳統微生物實驗對照後,分別為Thermus sp.與Microbacterium sp.。 以Thermus sp.進行批次實驗,基質濃度介於30 ~ 30000 mg/L TOC時,隨著基質濃度的提高Thermus sp.的µinitial亦有增加的趨勢,但當基質濃度大於3000 mg/L TOC時,µinitial呈現下降的趨勢,推測是因基質濃度高於一限制值後,高基質濃度反而會抑制微生物生長。批次實驗基質濃度為30、300、3000、30000 mg/L TOC,而µinitial分別為0.97、3.89、3.66、1.59 mg-cell/mg-cell-day。 將批次實驗結果套用文獻中的模式,利用Andrews的抑制方程式以數值分析所得結果µmax為4.95 mg-cell/mg-cell-day ,Ks為97 mg/L TOC,Ki為12000 mg/L TOC;利用變異數分析,f值為0.56,大於顯著值0.53,顯示Andrews方程式可適用於評估本研究系統中的反應動力參數。
The research utilized the thermophilic wasted sludge colleeded from a food company in Guanyin Industrial Park as the micbacterial resource. After the acclionation with a lab-scale reactor for more than six months, obtaining the pure culture strain of bacteria was identified through the process of gene mapping by a bio-technological company. Then, the result of was used in comparison with some possible strains of bacteria on NCBI website. The results of traditional microbial identification experiments were also used to confirm the strain of bacteria. After the identification process, olive oil was used as the substrate for a series of batch experiments at different substrate concentrations. This research employed some microbial growth kinetic models to estimates the growth and decay of the bacteria obtained from the pure culture study. Two strains of bacteria was identified from the pure culture study were identified with the results on NCBI website and the results from traditional microbial identification experiments. Two species were identified, Thermus sp. and Microbacterium sp.. Pure Thermus sp. was used as the pure culture in batch experiment at the substrate concentrations in the range of 30 to 30000 mg/L TOC. The results indicated an increase in the substrate concentrations increased the µinitial when Thermus sp. was used as the microorgomisun. When the substrate concentration was higher than 3000 mg/L TOC, µinitial significant decreased because of the effect of substrate inhibition. When the concentrations of the substrate were 30, 300, 3000, and 30000 mg/L TOC, µinitial was 0.97, 3.89, 3.66, and 1.59 mg-cell/mg-cell-day, respectively. This study used Andrews' inhibition equation to simulate the result of the batch experiments. The values of µmax 4.95 mg-cell/mg-cell-day, Ks 97 mg/L TOC, and Ki were 12000 mg/L TOC, respectively. The result showed Andrew's equation was adaptable to estimate the kinetic parameters in this system.
URI: http://hdl.handle.net/11455/5499
其他識別: U0005-2508200813345600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200813345600
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。