Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5523
標題: 碳源對藍綠菌Anabaena CH1、CH2、CH3光合產氫能力影響之研究
作者: 張時雨
Chang, Shih-yu
關鍵字: 藍綠菌
氫氣
碳源
生物產氫
出版社: 環境工程學系
摘要: 依照人類利用能源的速度來看,化石燃料即將耗盡,故發展替代性能源是刻不容緩的事,而氫氣是一種具發展潛力之替代能源,故許多國家將氫氣生產納入政策當中;利用生物方式產生氫氣是一種不會污染環境且不需另外消耗能源之氫氣生產方式,具有產氫能力之微生物有許多種,其中藍綠菌由於可利用光能產生氫氣,同時消耗二氧化碳減少溫室效應等優點,適合做為研究生物產氫之材料。 本研究將藍綠菌株CH1、CH2、CH3培養於好氧光照之培養槽內,使菌株大量生長後,進行生物產氫批次實驗,探討不同生長期之細胞、不同種類及濃度之碳源添加,氮源有無、厭氧或好氧,及光照或黑暗等條件下之生物產氫能力。 結果顯示,對數生長期之菌株CH1於未添加碳源與氮源之最大氫氣累積量為4 mL H2 / 100 mL Head Space,而對數生長後期之菌株CH3在添加4% 二氧化碳培養條件下之最大氫氣累積量,於66小時為8 mL H2 / 100 mL Head Space。 於添加不同濃度碳源之批次實驗結果顯示,菌株CH1與CH3培養於添加各種濃度醋酸鈉之氫氣累積量皆小於1 mL H2 / 100 mL Head Space。而添加1500 mg/L葡萄糖後菌株CH3於150小時後開始產生氫氣,最大氫氣累積量達23.1 mL H2 / 100 mL Head Space;添加2000 mg/L果糖之菌株CH3最大氫氣累積量達到88 mL H2 / 100 mL Head Space。 添加固定濃度碳源進行生物產氫批次實驗發現,(1)菌株CH1於添加2000 mg/L果糖之基質利用率最高,且氫氣累積量可達79 mL H2 / 100 mL Head Space,而添加蔗糖之氫氣累積量達32 mL H2 / 100 mL Head Space,但添加半乳糖、鼠李糖、蔗糖、乳糖之基質利用率皆小於10%,且不會產氫。(2)菌株CH3於添加2000 mg/L果糖時,基質利用率高達97.5%,且氫氣累積量達79 mL H2 / 100 mL Head Space,添加蔗糖之基質利用率高於60%,氫氣累積量達55 mL H2 / 100 mL Head Space,添加葡萄糖之基質利用率亦高達90%,而氫氣累積量為27 mL H2 / 100 mL Head Space,添加半乳糖、鼠李糖、蔗糖、乳糖之基質利用率為40% 至60%,氫氣累積量皆小於10 mL H2 / 100 mL Head Space。(3)菌株CH2不具產氫能力。 在對數生長期添加2000 mg/L果糖之生物產氫批次實驗發現,菌株CH1於添加2000 mg/L果糖後,氫氣累積量最高達到25.1 mL H2 / 100 mL Head Space,細胞生質量增加量為759 mg/L。菌株CH3於添加2000 mg/L果糖後,氫氣累積量最高達到27.6 mL H2 / 100 mL Head Space,細胞生質量增加量為522 mg/L;菌株CH2則不具產氫能力。 在同時添加2000 mg/L果糖與660 mg/L氨氮後,菌株CH1與CH3皆不會氣體,菌株CH1與CH3之果糖與氨氮含量下降至一定濃度後不再下降,有機酸含量亦較未添加氨氮者低。 在好氧條件下,添加2000 mg/L果糖後菌株CH1與CH3之基質利用率高達98%以上,且碳源在120小時內即利用完全,不會產生氫氣。 培養至對數生長後期之菌株CH1與CH3,在黑暗下之氫氣累積量約為8 mL H2 / 100 mL Head Space,較光照下對數生長後期之菌株其氫氣累積量為低。 綜合結果發現,於厭氧光照下,對數生長後期之菌株CH1與菌株CH3,在添加2000 mg/L果糖且不添加氮源之條件下,生物產氫能力較其他條件為強;菌株CH2則不具生物產氫能力。
Hydrogen evolution by cyanobacteria is a potential way of biohydrogen production for the future. Nitrogen-fixing cyanobacteria are photosynthetic organism with simple need, using CO2 and N2 as source of carbon and nitrogen, and sunlight as their source of energy. Cyanobacteria are able to evolve H2 in light catalysed by nitrogenase activity, with water serving as the primary electron donor. Since the optimal operating conditions for the CO2 uptake and H2 production are different, a two-stage system can be effectively employed to separate these two phases. In this study, Anabaena sp. CH1, CH2, and CH3 has been isolated and purified from paddy soils of middle Taiwan and the physiology of nitrogen metabolism of these two species has been studied, ether. These cyanobacterium were incubated in 4% CO2 and 96% air with 40 Wm2 intensity of light in the 150 mL volume reactors. After cultured a pried of time, cyanobacterium was translated into a 60 mL volume batch reactor proceeded a series of biohdyrogen batch experiments such as different kinds and concentrates of carbon source, log or later growth phase, with or without 660 mg/L ammonium, anaerobic or aerobic, light or dark, and different species of cyanobacterium. When 2000mg/L carbohydrates, such as fructose, glucose, galactose, rhamnose, lactose, and sucrose, been used as carbon source, it indicated that fructose is one of the most helpful inducer to product hydrogen. Cumulative H2 production was higher when cyanobacterium growing in later phase then in log phase. And there was no H2 production when incubated in 660 mg/L ammonium, nether in the dark. Over all, it was found that when added 2000 fructose under argon as gas phase with 5 Wm2 intensity of light and growth in later phase, cyanobacterium CH3 produce a maximum cumulative hydrogen pruduction as 80 mL H2 / 100 mL Head Space without oxygen co production.
URI: http://hdl.handle.net/11455/5523
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.