Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5526
標題: 高脂質累積潛力微藻之分離及生質柴油生成限制因子之探討
Isolation of the high lipid accumulating microalgae and investigation of their limiting of biodiesel production.
作者: 賴芃劭
Lai, Peng-Shau
關鍵字: microalgae
微藻
biodiesel
lipid
carbon dioxide
生質柴油
脂質
二氧化碳
出版社: 環境工程學系所
引用: Akoto, L., R. Pel, H. Irth, U. A. T. Brinkman, R. J. J. Vreuls. 2005. Automated GC-MS analysis of raw biological samples. Application to fatty acid profiling of aquatic micro-organisms. Journal of Analytical and Applied Pyrolysis Vol. 73, pp. 69-75. Alonzo F., P. Mayzaud. 1999. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile Red. Marine Chemistry Vol. 67, pp. 289-301. Arrhenius, S. 1896. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Phil Mag S.5 Vol. 41, No.251, pp. 237-276. Becker E.W. 1994. Microalgae: biotechnology and microbiology. Cambridge University Press UK. pp.1. Becker, E. W. 1984. Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass Vol. 4, No. 1, pp. 1-19. Berges, J.A., D.O. Chaelebois, D.C. Mauzerall, P.G. Falkowski. 1996. Differential effects of nitrogen limitation on photosynthesis efficiency of photosystems I and II in microalage. Plant Physisology Vol. 110, pp. 689-696. Berges, J.A., P.G. Falkowski. 1998. Physiological stress and cell depth in marine phytoplankton: Induction of proteases in reponse to nitrogen or light limitation. Limnology and Oceanography Vol. 43, pp. 129-135. Biodiesel Production Technology (August 2002-January 2004),By National Renewable Energy Laboratory of USA. Bligh, E. G. and W. J. Dyer. 1959. A rapid method for total lipid extraction and purification. Candian Journal of Biochemistry and Physiology Vol. 37, pp. 911-917. Carvalho A. P., F. X. Malcata. 2005. Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology. Vol. 7, No. 4, pp. 381-388. Carvalho, A. P., F. X. Malcata. 2005. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. Journal of Agricultural and Food Chemistry Vol. 53, pp. 5049-5059. Chohji, T., T. Masahiro, E. Hirai. 1996. CO2 recovery from flue gas by an ecotechnological (environmentally friendly) system. Pergamon Vol. 96, pp. 151-159. Cooksey, K.E., J.B Guckert, S.A. Williams, P.R. Collis. 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. Journal of Microbiological Methods Vol. 6, pp. 333-345. Davidson, K., K.J. Flynn, A. Cunningham. 1992. Non-steady state ammonium-limited growth of marine phytoflagellate, Isochrysis galbana Parke. The New Phytologist Vol. 122, pp. 433-438. de-Bashan L. E., H. Juan-Pablo, M. Taylor, B. Yoav. 2003. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research Vol. 38, No. 2, pp. 466-474. Diesel, R. 1893. The Theory and Construction of a Rational Heat Engine. Elsey D., D. Jameson, B. Raleigh, M. J. Cooney. 2007. Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods Vol. 68, pp. 639-642. Encinar, J. M., J. F. Gonalez, J. J. Rodriguez, A. Tejedor. 2002. Biodiesel Fuels from vegetable oils: Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy and Fuels Vol.16, pp. 443-450. Energy Information Administration. 2006/10/10. Short-Term Energy Outlook. Eppley, R.W., J.N. Rogers. 1970. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine plankton diatom. Journal of Phycology Vol. 6, pp. 344-351. Falkowski, P. G., A. Sukenik, R. Herzig. 1989. Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. Journal of Phycology Vol. 25, pp. 471-478. Falkowski, P. G., D. P. Stone. 1975. Nitrate uptake in marine phytoplankton: energy source and the interaction with carbon fixation. Marine Biology Vol. 32, pp. 77-84. Fowler, S. D., W. J. Brown, J. Warfel, P. Greenspan. 1979. Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. Journal of Lipid Research Vol. 28, pp. 1225-1232. Freedman, B., R. O. Butterfield, E. H. Pryde. 1986. Journal of the American Oil Chemists Society Vol. 63, pp. 1375-1380. Garbisu C., M. G. Jone , J. B. Michael , O. H. David, L. S. Juan. 1991. Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Journal of Applied Phycology Vol. 3, No. 3, pp. 221-234. Glazer A. N., M. D. Hatch, H. K. Boardman. 1981. Photosynthetic Accessory Protein with Billin Prothetic Group. The Biochemistry of Plants. Vol. 8, photosynthesis, Academic Press. New York. Hanagata N, T. Takeuchi, Y. Fukuju. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry Vol. 31, pp. 3345-3348. Hoshida H., O. Takayuki, M. Akira, A. Rinji, N. Yoshinori. 2005. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology. Vol. 17, No. 1, pp. 29-34. Ida A., M. Janssen, J. M. S. Rocha, J. H. Reith, R. H. Wijffels. 2002. Photobiological hydrogen production: Photochemical efficiency and bioreactor design, In Bio-methane and Bio-hydrogen, J. H. Reith, R. H. Wijffels and H. Barten, ed. (Dutch Biological Hydrogen Fundation), pp.124-145. Jara, A., M. H´ector, M. Antera, M. Cristina, N. Laurette, R. Vladimir, D. Ricardo. 2003. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. Journal of Applied Phycology Vol. 15, pp. 433-438. Kalligeros, S., F. Zannikos, S. Stournas, E. Lois, G. Anastopoulos, C. Teas, F. Sakellaropoulos. February, 2003. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy Vol. 24, No. 2, pp. 141-149. Kaplan, D., Z. Cohen, A. Abeliovich. 1986. Optimal growth conditions for Isochrysis galbana. Biomass Vol. 9, pp. 37-48. Kaplan, S., C. J. Arntzen, A. Govindjee. 1982. Photosynthetic Structure and function. Photosynthesis, Vol. 1, Academic Press. New York. Kazuhiro, B. M. Kaieda, T. Matsumoto,A. Kondo, H. Fukuda. 2001. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal Vol. 8, pp. 39-43 Kenichiro T., S. Sawayama. 2005. [Review Paper] Liquid Fuel Production Using Microalgae. Journal of the Japan Petroleum Institute, Vol. 48, No. 5, pp. 251-259. Kodama M, H. Ikemoto, S. 1993. Miyachi A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture. J Marine Biotechnol Vol. 1, pp. 21-25. K
摘要: 生質柴油是替代性燃料之一,生質柴油是由動、植物油脂製成,具有能源再生性、生物可分解性與低污染性的優點,以植物油系的生質柴油作為燃料燃燒雖然亦會產生二氧化碳,但植物可將其吸收經光合作用轉換為氧氣及生質能,成為完善的生態循環,並無二氧化碳淨量增加,此幾項優點正好解決了能源危機及二氧化碳排放問題。 在眾多生質柴油生產方法中,以微藻(microalgae)累積脂質作為原料產油之方法擁有最多的優點,包括可利用二氧化碳作為碳源生長,消耗溫室效應氣體;其次為光合自營,且單位光合生長效率高,使用之營養源價格低,可使用海水、河水或廢水直接作為培養基;另外和其他植物相比,每單位地區表面有較高的換油效率,可累積脂質達細胞乾重60%。但由於其生長速率較低,所以此方法之應用有所侷限。 本研究希望從台灣本土水樣中篩選能累積較多脂質的微藻,並探討其生長因子,包括二氧化碳濃度及氮源缺乏對其生長與脂質累積之影響,實驗先以不同二氧化碳濃度培養篩選之微藻,促進其生長速率,再試驗氮源缺乏的條件下藻株累積油脂之情形,藉由生長相與產油相分開時,脂質的累積量測試,以期求得微藻的最大生長速率及最多脂質累積量。 結果篩選得四株具脂質累積潛力的本土藻株,編號分別為CHL-4、CHT-SA1、CHT-SB2與CHT-SB3,於不同二氧化碳濃度試驗發現四株藻株均可在10%二氧化碳濃度下生長良好,但高的二氧化碳濃度是不利於藻株脂質累積的,各藻株在此系列實驗中展現的最高的脂質累積量分別為CHL-4的34.82%、CHT-SA1的28.67%、CHT-SB2的32.97%以及CHT-SB3的27.53%,CHL-4、CHT-SB2與CHT-SB3最大脂質累積量均出現於3%二氧化碳培養的條件下,而CHT-SA1則出現於曝空氣培養的條件。在氮源缺乏的實驗中,結果藻株脂質累積量並無如預期增加反而呈下降的趨勢,此應是藻株光合作用能力低落所致。四株藻株脂肪酸組成均以C16:0、C18:1、C18:2與C18:3四者為主,又以C18:3佔最大數可達30%左右,這幾種脂肪酸碳數與經原油分餾後的石化柴油(碳數為14至20)之碳數相符,確實可作為生質柴油之原料來源。
Biodiesel, an alternative diesel fuel, is made from renewable biological source such as vegetable oils and animal fats. It is biodegradable and nontoxic and has low emission profiles. Thus, biodiesel is environmentally beneficial. Using vegetable oils as a source of biodiesel may produce carbon dioxide, but plants can turn the carbon dioxide into oxygen and biomass through photosynthesis. There is no net increase of carbon dioxide, so it becomes an integrated ecosystem. These advantages can solve the problems of energy crisis and carbon dioxide emission. In the numerous methods of producing biodiesel, using microalgae to accumulate lipids as the material has many advantages, The advantages of applying microalgae include: (1) it utilizes carbon dioxide which is a greenhouse gas as its carbon source; (2) it grows photoautotrophically and has high photosynthetic rate per unit biomass; (3) it has higher oil yield than other higher plant per area surface. However, according to previous studies, its low growth rate limited its application. In this research, the most important growth factor of domestic microalgae, carbon dioxide, will be concerned, and the optimal carbon dioxide concentration will be found out to promote its growth rate. After promoting the growth rate of microalgae, lipids accumulation in microalgae will be investigated by controlling the ratios of the nitrogen nutrient. The effect of separating growth phase and lipid accumulation phase will also be investigated. Combining these investigations, we should achieve the goal of the maximum growth rate and lipid accumulation of microalgae. In this investigation, four high lipid accumulating microalgae CHL-4, CHT-SA1, CHT-SB2 and CHT-SB3 were selected. These strains grow well under the condition of 10% of carbon dioxide while this concentration was unfavorable to lipid accumulation. The highest lipid in this series of study of CHL-4, CHT-SA1, CHT-SB2 and CHT-SB3 achieved to 34.82%, 28.67%, 32.97% and 27.53% of cell dry weight, respectively. The highest lipid content of CHL-4, CHT-SB2 and CHT-SB3 appeared in the growth condition of 3% of carbon dioxide and the highest lipid accumulation of CHT-SA1 occurred when it cultivated with aeration. In the experiment of nitrogen limitation, the results exhibited that lipid accumulation of microalgae could not increase but decreased gradually. The low photosynthetic ability of microalgae might affect lipid accumulation although the limitation of nitrogen. The fatty acid of lipid produced by these four strains were mainly C16:0, C18:1, C18:2 and C18:3. Furthermore, the C18:3 was the major portion of total fatty acid and reached to over 30%. Since the compositions of fatty acid were the same as fossil fuels (C14-C20), these strains were potential to be used as the material of biodiesel.
URI: http://hdl.handle.net/11455/5526
其他識別: U0005-2907200813163200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200813163200
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.