Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5542
標題: 紫色不含硫光合菌結合不同生物系統產生氫氣之研究
Hydrogen production by purple nonsulfur bacteria in combination with different biological system.
作者: 林鈺傑
Lin, Yu-Chien
關鍵字: purple nonsulfer bacteria
紫色不含硫光合菌
cyanobacteria
藍綠菌
出版社: 環境工程學系所
引用: Akkerman, I., M. Janssen, J. M. S. Rocha, J. H. Reith, and R. H. Wijffels (2003). Photobiological hydrogen production: Photochemical efficiency and bioreactor design, In Bio-methane and Bio-hydrogen, J. H. Reith, R. H. Wijffels and H. Barten, ed. (Dutch Biological Hydrogen Foundation), pp. 124-145. Allen, M. B., and Arnon, D. I. (1955). Studies on nitrogen- fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica LEMM. Plant Physiol. 30:366~372. Anastasios, Melis., and Matthew, R. Melnicki. (2006). Integrated biological hydrogen production. International Journal of Hydrogen energy. 31 1563-1573. Antal, T. K., Lindblad, P. (2005). Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology 98,114-120. Baronofsky, J. J., Schreurs, W. J. A. and Kashket, E. V.(1984). Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium theraceticum. Applied and Environmental Microbiology 48:1134-1139. Basar, Uyar., Inci, Eroglu., Meral, Yücel., Ufuk, Gündüz and Lemi, Türker. (2007). Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Internation Journal of Hydrogen Energy 32, Issue 18, Pages 4670-4677. Batstone, D. J., Damein, J., Keller, J., AngelidarKi, I., Kalyuzhny, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W.T.M. Siegrist, H. and Vavilin, V.A. (2002). Anaerobic Difestion Model No.1 (ADM1). International Water Association. London, pp 1-5. Chu, A., Mavinic, D. S., Ramey, W. D., Kelly, H. G. (1996). A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic design of wastewater sludge. Water Research 30, 1759-1770. Das, Debabrata., Dutta, Tumpa., Nath, Kaushik., Shireen, Meher. Kotay., Das, Amit. K., Nejat, Veziroglut., (2006). Role of Fe-hydrogenase in biological hydrogen production. Current science. vol. 90, no12, pp. 1627-1637. Datta, Madamwar., Nikki, Garg. and Vishal, Shah. (2000) Review of Cyanobacterial hydrogen production. World Jounal of Microbiology & Biotechology 16,757-767. Debabrata, D.,and Veziroglu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen 26,13-28. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry 28, 350-356. Ernst, A., Kerfin, W., Spiller, H. and Boger, P. (1979) External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Zeitschrift fur Naturforschung 34, 820-825. Gest, H., and Kamen, M. D. (1949). Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109, 558-559. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995). Regulation of metabolism shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Review 17, 287-297. Gottschalk, G. (1979). Bacterial Metabolism (America: Spirnger-Verlag New York Inc.).167-224. Greenberg, A., Trussel, R. R., and Cleseeri, L.S. (1985). Standard Methods for the Examination of Waste and Wastewater. Am. Public Health Assoc., Washington, DC. 16th ed., 1268. Haas, R., T. Faber, J. Green, M. Gual, C. Huber, G. Resch, W. Ruijgrok, J. Twidell. (2001).Review report on Promotion Strategies for electricity from renewable energy sources in EU countries. Green Electricity. pp 6-9. Hallenback, P.C., Kochian, L.V., Weissmann, J.C. and Benemann, J.R. (1978). Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica. Biotechnology and Bioengineering Symposium 8, 283-297. Hamer, G. (1987). Fundamental aspect of aerobic thermophilic aerobic digestion and processing requirements for landfilling. Elsevier Applied Science. pp. 2-19. Horiuchi, J., Shimizu, T., Kanno, T. and Kobayashi, M. (1999). Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstate culture. Biotechnology and bioengineering 13:155-157. Johansson, T. B., H. Kelly,. A. K. N. Reddy, and R. H. Williams. (1993). Renewable Energy:Sources for Fuels and Electricity. Earthscan publications. Yoon, Jong. Hyun., Shin, Ji. Hae., Kim, Mi-Sun., Sim, Sang. Jun., Hyun, Park.Tai., (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy 31 ,721 – 727. Katoka, N., Miya, A. and Kiriyama, K. (1997). Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Science and Technology 36:41-47. Keeney, D. R., and D. W. Nelson . (1982). Indophenol-blue method.Chemical and microbiological properties., In Methods of soil analysis part 2, A. L. Page, R. H. Miller, and D. R. Keeny., ed., pp. 674-676. Khatipov, E., M. Miyake, J. Miyake, and Y. Asada. (1998). Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrate. FEMS Microbiology Letters 162, 39-45. Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press; p. 1–401. Koku, H., I. Eroglu, U. Gunduz, M. Yucel and L. Turker (2002). Aspect of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 27, 1315-1329. Lambert, G. R., and Smith, G. D. (1977) Hydrogen formation by marine blue-green algae. FEBS Lett. 83, 159-162. LaPara, T., Alleman, J. (1999). Thermophilic aerobic biological wastewater treatment. Water Research. 33:895-908. Lay, J. J. (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering 68:269-278. Lin, C.Y., C.H. Lay,. (2004). Carbon/nitrogen-ratio elect on fermentative hydrogen production by mixed microflora, International Journal of Hydrogen Energy 29 41 – 45. Lovitt, R. W., Shen, G. J. and Zeikus, J. G.(1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. Journal of bacteriology 170:2809-2815. Madigan, M. T., J. M. Martinko, and J. Parker (2006). Brock biology of Microorganisms. Pearson Education, Inc.,11th edition. Mason, C. A. (1986). Microbial death lysis and ''cryptic'' growth: Fundamental and applied, DIss. ETH No. 8150 Swiss Federal Institute of Technology. Mckee, T., and McKee, J. R. (2003). Biochemistry: an introduction. 3nd ed. McGraw-Hill Book Co., New York. 417-448. Miyake, J., Veziroglu, T. N., Takashashi P. K. (1990). Application of photosynthetic systems for energy conversion. In: editors. Hydrogen energy progress VIII. Proceedings 8th WHEC, Hawaii. New York: Pergamon Press. p. 755. Peguin, S., and P. Soucaille . (1995). Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methly viologen addition. Applied and Environmental Microbiology 61, 403-405. Peters, J. W., William N. Lanzilotta, Brian J. Lemon, and Lance C. Seefeldt. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 282, 1853-1858. Pfennig, N. (1978). Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring memner of the family Rhodospirillaceae. International Journal of Systematic Bacteriology 28, 283-288. Rai, A.K. & Abraham, G. (1995) Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabena doliolum. Journal of Applied Bacteriology 78, 501-506. Ramos, J. L., and Guerrero, M. G. (1983) Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Arch. Microbiol. 136, 81-83. Ramos, J. L., Madeno, F., and Guerrero, M. G. (1985) Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Arch. Microbiol. 141, 105-111. Reith, J. H., Wijffels, R.H. and Barten, H. (2003). Bio-methane and bio-hydrogen , Dutch Biologicals Hydrogen Foundation,Hague,pp 9-18 Ren, N., Wang, B. and Ma, F. (1995). Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process. Proc.of 68th Annual Water environmental Federal Conference, Miami. Rittmann, B. E., and P. L. McCarty. (2001). Environmental Biotechnology: Principles and Applications (New York: McGraw-Hill Companies, Inc.). 581-603. Sakai, Y., Aoyagi T., Shiota, N., Akashi, A., Hasegawa, S. (2000). Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology. 42, 81-88. Sasikala, C. H., C. H. V. Ramana, and P. Raghuveer, R. A. O. (1995). Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in rhodobacter sphaeroides O.U. 001. Int. J. Hydrogen energy, Vol. 20, No. 2. pp. 123-126. Sasikala, K., CH. V. Ramana, and P. Raghuveer Rao. (1991). Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 16, 597-601. Sasikala, K., CH. V. Ramana, P. Raghuveer Rao, and M. Subrahmanyam. (1990). Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency on the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 154, 795-797. Schoenheit, P., A. Brandis, and R. K. Thauer . (1979). Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Archives of Microbiology 120, 73-76. Schroder, C., M. Selig and P. Schonheit. (1994). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime. involvemtnt of the Embden-Meyerhof pathway. Archives of Microbiology 161,460-470. Schwartz, R. D. and Keller, F. A. (1982). Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentation at acidic pH. Applied and Environmental Microbiology 43:1385-1392. Shah, V., Garg, N., and Madamwar, D. (2001) Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol. Lett. 194, 71-75. Shiota, N., Akashi, A., Hasegawa, S. (2002). A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology. 45, 127-134. Stevens, P., C. Vertonghen, P. de Vos, and J. de Ley. (1984). The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnology Letters 6, 277-282. Tanisho, S. M. K., and N. Kadokura. (1998). Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy 23, 559-563. Terracciano, J. S., Schreurs, W. J. A. and Kashket, E. R. (1987). Membrance H+ conductance of Clostridium theroaceticum and Clostridium acetobutylicum, Applied and Environmental Microbiology 53:782~786. Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P. (1996) Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413: Effects of Hydrogen and Organic Substrate. Current Microbiol. 33, 11-15. Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y. (2001). Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology 57:555-562. Ugwuanyi J. O., Harvey L. M., McNeil B. (2005a). Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology 96, 707-719. Ugwuanyi J. O., Harvey L. M., McNeil B. (2005b). Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioresource Technology 96, 721-730. Wang G and Wang D.I.C. (1984). Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum, Applied and Environmental Microbiology 47: 294-298. Wolk, C. P. (1982). Heterocysts. In the biology of cyanobacteria N.G. and B.A. whitton (ends) Oxford:Blackwell Scientific Publications Ltd pp. 359-386. Wu, Shu-Yii, Chun-Hsiung Hung, Chiu-Yue Lin, Ping-Jei Lin, Kuo-Shing Lee, Chi-Num Lin, Fang-Yuan Chang, Jo-Shu Chang, (2008). HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended, granular and immobilized sludge systems using glucose as the carbon substrate. International Journal of Hydrogen Energy. Volume 33. Issue 5. Pages 1542-1549. Yongzhen Tao, Yang Chen, Yongqlang Wu, Yanling He, Zhihua Zhou,. (2007). High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. International Journal of Hydrogen Energy. vol. 32, no2, pp. 200-206 . 王炳南。2005。厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。 甘乃如。2001。酸鹼度、水力停留時間及食微比對高濃度酒糟廢液生化產氫之影響。碩士論文。高雄第一科技大學。高雄。 吳幸娟,鄭宏德,翁志聖,黃孝信。2001。台灣地區工業廢棄物產生現況及處理需求分析研究。工安環保報導。第1期。頁數 30-32。 林建勝。2007。以生質能源程序探討廚餘厭氧氫發酵之研究。碩士論文。國立成功大學。台南。 洪仁陽。2003。污泥水解減量技術。化工資訊與商情。第12卷第4期。頁數66-73。 洪國展。2004。光合產氫之程序組合及應用。碩士論文。國立中興大學。台中。 范欣惠。2006。藍綠菌最佳產氫生理條件及其反應器操作之研究。碩士論文。國立中興大學。台中。 郁揆民。2003。紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。 涂良君。1999。產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。 張時雨。2004。碳源對藍綠菌Anabaena CH1、CH2、CH3光合產氫能利影響之研究。國立中興大學。台中。 郭世強。2006。廚餘厭氧發酵產氫程序之功能評估。碩士論文。國立成功大學。台南。 陳伯中。1986。藻類與能源。藻類之研究與應用研討會論文集。台北。第67-76頁。 陳菀貽。2006。高溫性細菌分解有機污泥及光合作用細菌利用污泥分解物生成氫氣之研究。碩士論文。國立中興大學。台中。 曾智玹。2007。廢水廠污泥及酒糟廢液複合基質之能源化可行性研究。碩士論文。台中教育大學。台中。 董昀昌。2001。產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究。碩士論文。國立中興大學。台中。 蔡佳玲。2007。紫色不含硫光合菌利用高溫好氧污泥消化出流水產生氫氣之研究。碩士論文。國立中興大學。台中 蔡信行。2006。替代能源之回顧與展望 (上) 中華民國九十五年石油季刊 第42卷 第1期 行政院環保署網站 http://www.epa.gov.tw/
摘要: 現今地球暖化的惡化,與石化燃料的耗竭嚴重影響人類的生活。而氫氣是能有效改善環境問題的能源之一,如能大量生產氫氣,將會對環境有正面的幫助,現階段氫氣生產的方法包括石化燃料產生氫、水分解產生氫氣與生物方等。 本研究欲利用生物方法產生氫氣,現今具有產生氫能力的微生物有綠藻、藍綠菌、紫色光合作用細菌與厭氧菌。由於藍綠菌、紫色光合作用細菌與厭氧菌各有不同的產氫條件,本研究分為三個部份探討。 第一部分為高溫好氧污泥消化連續流系統提升有機酸產生的試驗,操作策略分為再次添加高溫菌、修改水力停留時間與提升進流污泥MLSS濃度。其中,修改水力停留時間與提升進流污泥的MLSS濃度都能提升有機酸的生成,平均有機酸產量為1072 mg/L;隨著有機酸的提升,抑制紫色光合作用細菌產氫的NH4+-N濃度也亦增加274 mg/L,將出流水進行紫色光合作用細菌產氫試驗,結果顯示紫色不含硫光合菌biomass產量提升,但氫氣生成被NH4+所抑制,故以高溫好氧消化污泥出流水不適合紫色光合細菌產氫。 第二部分為由台中某生活污水廠污泥經由熱篩程序,分離出厭氧混合族群,藉由Endo培養基測試其是否具有產氫能力,所分離菌群具有產氫能力,並再以廚餘進行厭氧發酵菌產氫批次試驗並將其所得的液態產物作為光合細菌批次產氫試驗,作為兩階段生物產氫。結果顯示,廚餘作為厭氧產氫菌與光合細菌串聯產氫是適合的基質。第三部份則為藍綠菌與光合菌共培養初步建立適合兩種微生物產氫的光照系統。
Today global energy requirement are mostly dependent on fossil fuels. This will eventually lead to the foreseeable depletion of limited fossil energy resources. Presently, the utilization of fossil fuels is causing global climate change. In order to remedy the depletion of fossil fuels and their environmental misdeeds, hydrogen has been suggested as the energy carrier of the future. It is known that hydrogen may be produced by fermentative bacteria and phototrophs of different tamxonomic groups including several species of purple nonsulfur bacteria and cyanobacteria. If the VFAs, produced in anaerobic process by fermentative bacteria, are used as substrate for cocultivation cells of cyanobacteria and purple nonsulfer bacteria to produce hydrogen, the hydrogen yield will be increased. In order to increase the hydrogen production by Rhodopseudomonas palustris WP3-5 using the pretreated effluent of thermophilic aerobic digestion (TAD), the first part of this research was to increase the organic acids content of the effluent of continuous TAD reactor. Strategies included the addition of thermophilic bacteria, extending the hydraulic retention time as well as increasing MLSS concentration of influent sludge. The result indicated that extending the hydraulic retention time and increasing MLSS concentration increased the organic acid production. The average organic acid concentration was 1072 mg/L. However, the NH4+-N concentration, which inhibited the photohydrogen production, raised to 274 mg/L with increasing organic acid concentrations. If this pretreated effluent of TAD was used for photohydrogen production, it can be seen that hydrogen production was inhibited by NH4+-N while biomass increased. Therefore the effluent of TAD is not suitable for photohydrogen production. The second part of this research was to investigate the anaerobic hydrogen production process by photosynthetic hydrogen production process. The result indicated that kitchen waste was suitable for this purpose. The third part of this research was to cocultivate cyanobacteria and photosynthetic bacteria, the illumination system for the cultivation was wstablished.
URI: http://hdl.handle.net/11455/5542
其他識別: U0005-3107200810114300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200810114300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.