Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5559
標題: 活性碳吸附及結合過硫酸鹽氧化MTBE之可行性評估
Evaluation of activated carbon adsorption and combining persulfate oxidation of MTBE
作者: 吳宜蓁
Wu, Yi-Jhen
關鍵字: adsorption
吸附
pyrite
sodium persulfate
sulfate radical
PRB
ISCO
黃鐵礦
過硫酸鈉
硫酸根自由基
透水性反應牆
現地化學氧化法
出版社: 環境工程學系所
引用: Álvarez, P.M., Beltrán, F.J., Gómez-Serrano, V., Jaramillo, J., Rodríguez, E.M., 2004. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research 38, 2155-2165. Barreto, R.D., Gray, K.A., Anders, K., 1995. Photocatalytic degradation of methyl-tert-butyl ether in TiO2 slurries: A proposed reaction scheme. Water Research 29, 1243-1248. Baus, C., Hung, H., Sacher, F., Fleig, M., Brauch, H., 2005. MTBE in drinking water production - Occurrence and efficiency of treatment technologies. Acta hydrochimica et hydrobiologica 33, 118 - 132. Behrman, E.J., 1995. Ammonium peroxydisulfate in: Encyclopedia of reagents for organic synthesis, Paquette, L. A.(ed). John Wiley & Sons Inc. Behrman, E.J., Dean, D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B 723, 325-326. Bevan, C., Tyl, R.W., Neeper-Bradley, T.L., Fisher, L.C., Panson, R.D., Douglas, J.F., Andrews, L.S., 1997. Developmental toxicity evaluation of methyl tertiary-butyl ether (MTBE) by Inhalation in mice and rabbits. Journal of Applied Toxicology 17, S21-S29. Bird, M.G., Burleigh-Flayer, H.D., Chun, J.S., Douglas, J.F., Kneiss, J.J., Andrews, L.S., 1997. Oncogenicity studies of inhaled methyl tertiary-butyl ether (MTBE) in CD-1 mice and F-344 rats. Journal of Applied Toxicology 17, S45-S55. Birkholz, M., Fiechter, S., Hartmann, A., Tributsch, H., 1991. Sulfur deficiency in iron pyrite (FeS2-x) and its consequences for band-structure models. Physical Review B 43, 11926-11936. Bostick, B.C., Fendorf, S., Bowie, B.T., Griffiths, P.R., 2000. Influence of Cadmium sorption on FeS2 oxidation. Environmental Science & Technology 34, 1494-1499. Chen, K.F., 2009. methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: feasibility and kinetics Studies. Water Environment Research 81, 687. Daifullah, A.A.M., Girgis, B.S., 2003. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects 214, 181-193. Damm, J.H., Hardacre, C., Kalin, R.M., Walsh, K.P., 2002. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Research 36, 3638-3646. Davidson, J.M., Creek, D.N., 2000. Using the gasoline additive MTBE in forensic environmental investigations. Environmental Forensics 1, 31-36. Davis, S.W., Powers, S.E., 2000. Alternative sorbents for removing MTBE from gasoline-contaminated ground water. Journal of Environmental Engineering 126, 354-360. FMC-Corporation, 2001. Persulfate technical information. http://www.fmcchemicals.com/TechDataSheetsMSDS/Persulfates/tabid/1446/Default.aspx. Georgi, A., Kopinke, F.-D., 2005. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental 58, 9-18. Gonzalez-Olmos, R., Iglesias, M., 2008. Thermodynamics and kinetics of fuel oxygenate adsorption into granular activated carbon. Journal of Chemical & Engineering Data 53, 2556-2561. Hakkola, M., Honkasalo, M.-L., Pulkkinen, P., 1997. Changes in neuropsychological symptoms and moods among tanker drivers exposed to gasoline during a work week. Occup Med 47, 344-348. Han, Z.-X., Wang, J.-H., 2009. Effect factors on the degradation of MTBE with fenton reagent. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 39, 155-160. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., Xiong, Y., Zhu, M., 2008. Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2. Journal of Hazardous Materials 154, 795-803. Huang, H.-H., Lu, M.-C., Chen, J.-N., Lee, C.-T., 2003. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere 51, 935-943. Huang, K.-C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49, 413-420. Huling, S.G., Jones, P.K., Ela, W.P., Arnold, R.G., 2005. Fenton-driven chemical regeneration of MTBE-spent GAC. Water Research 39, 2145-2153. Hung, H.-W., Lin, T.-F., Baus, C., Sacher, F., Brauch, H.-J., 2005. Competitive and hindering effects of natural organic matter on the adsorption of MTBE onto activated carbons and zeolites. Environmental Technology 26, 1371 - 1382. Juntgen, H., 1977. New applications for carbonaceous adsorbents. Carbon 15, 273-283. Kan, E., Huling, S.G., 2009. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon. Environmental Science and Technology 43, 1493-1499. Kasprzyk-Hordern, B., Andrzejewski, P., Dabrowska, A., Czaczyk, K., Nawrocki, J., 2004. MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process. Applied Catalysis B: Environmental 51, 51-66. Kato, Y., Machida, M., Tatsumoto, H., 2008. Inhibition of nitrobenzene adsorption by water cluster formation at acidic oxygen functional groups on activated carbon. Journal of Colloid and Interface Science 322, 394-398. Kimura, M., Miyamoto, I., 1994. Discovery of the activated-carbon radical AC+ and the novel oxidation-reactions comprising the AC/AC+ cycle as a catalyst in an aqueous solution. Bulletin of the Chemical Society of Japan 67, 2357-2360. Kolthoff, I.M., Miller, I.K., 1951. The chemistry of persulfate. I. The kinetics and mechanism ofthe decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society 73, 3055-3059. Kommineni, S., Ela, W.P., Arnold, R.G., Huling, S.G., Hester, B.J., Betterton, E.A., 2003. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science 20, 361-373. LaChance, J.C., Hewitt, A., Reitsma, S., Lachance, J., Barker, R., 1998. In situ oxidation of TCE using potassium permanganate part 2: Pilot study. physical, chemical, and thermal technologies, remediation of chlorinated and recalcitrant compounds. Battelle Press Ohio USA. Latimer, W.M., 1952. Oxidation potentials. Prentice-Hall Englewood Cliffs lnc, New Jersey. Lee, W., Batchelor, B., 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environmental Science & Technology 36, 5147-5154. Li, L., Quinlivan, P.A., Knappe, D.R.U., 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085-2100. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil and Sediment Contamination 12, 207-228. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Huang, C.-F., Mohanty, N., Kurakalva, R.M., 2008. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73, 1540-1543. Liang, C., Lai, M.-C., 2008. Trichloroethylene degradation by zero valent Iron activated persulfate oxidation. Environmental Engineering Science 25, 1071-1078. Liang, C., Lee, I.L., 2008. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination -- A proof of concept study. Journal of Contaminant Hydrology 100, 91-100. Liang, C., Lin, Y.-T., Shih, W.-H., 2009a. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Industrial & Engineering Chemistry Research 48, 8373-8380. Liang, C., Lin, Y.-T., Shin, W.-H., 2009b. Persulfate regeneration of trichloroethylene spent activated carbon. Journal of Hazardous Materials 168, 187-192. Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Mackay, D.M., Cherry, J.A., 1989. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology 23, 630-636. Martin, T.D., Greed, J.T., Brockhoff, C.A., 1994. Sample preparation procedure for spectrochemical determination of total recoverable elements. Method 200.2 Revision 2.8. Minisci, Citterio, 1983. Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Accounts of Chemical Research 16, 27-32. Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995-2001. Myron A. Mehlman, 2002. Carcinogenicity of methyl-tertiary butyl ether in gasoline. Annals of the New York Academy of Sciences 982, 149-159. Nakano, Y., Hua, L.Q., Nishijima, W., Shoto, E., Okada, M., 2000. Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC). Water Research 34, 4139-4142. Newcombe, G., Drikas, M., Hayes, R., 1997. Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Research 31, 1065-1073. Noh, J.S., Schwarz, J.A., 1990. Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28, 675-682. Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., Yoon, C., 2009. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials 168, 346-351. Okawa, K., Suzuki, K., Takeshita, T., Nakano, K., 2007. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Water Research 41, 2095. Park, S.-J., Jung, W.-Y., 2002. Effect of KOH activation on theformation of oxygen structure in activated carbons synthesized from polymeric precursor. Journal of Colloid and Interface Science 250, 93-98. Pham, H.T., Kitsuneduka, M., Hara, J., Suto, K., Inoue, C., 2008. Trichloroethylene transformation by natural mineral pyrite: The deciding role of oxygen. Environmental Science & Technology 42, 7470-7475. Quinlivan, P.A., Li, L., Knappe, D.R.U., 2005. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673. Rael, J., Shelton, S., Dayaye, R., 1995. Permeable barriers to remove benzene: Candidate media evaluation. Journal of Environmental Engineering 121, 411-415. Rao, M.B., Jenkins, R.G., 1987. Molecular dimensions and kinetic diameters for diffusion for various species. Carbon 25, 445-446. Rivera-Utrilla, J., Sánchez-Polo, M., Mondaca, M.A., Zaror, C.A., 2002. Effect of ozone/activated carbon treatments on genotoxic activity of naphthalenesulphonic acids. Journal of Chemical Technology & Biotechnology 77, 883-890. Rodriguez-Reinoso, F., 1998. The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175. Ruthven, D.M., 1984. Principles of adsorption and adsorption processes. John Wiley & Sons Inc. Sánchez-Polo, M., Rivera-Utrilla, J., 2003. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon 41, 303-307. Safarzadeh-Amiri, A., 2001. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters. Water Research 35, 3706-3714. Salame, I.I., Bandosz, T.J., 1999. Study of water adsorption on activated carbons with different degrees of surface oxidation. Journal of Colloid and Interface Science 210, 367-374. Salame, I.I., Bandosz, T.J., 2003. Role of surface chemistry in adsorption of phenol on activated carbons. Journal of Colloid and Interface Science 264, 307-312. Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J., 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology 30, 363-411. Sheintuch, M., Matatov-Meytal, Y.I., 1999. Comparison of catalytic processes with other regeneration methods of activated carbon. Catalysis Today 53, 73-80. Siedlecka, E.M., Stepnowski, P., 2006. Decomposition rates of methyl tert-butyl ether and its by-products by the Fenton system in saline wastewaters. Separation and Purification Technology 52, 317-324. Siedlecka, E.M., Wieckowska, A., Stepnowski, P., 2007. Influence of inorganic ions on MTBE degradation by Fenton''s reagent. Journal of Hazardous Materials 147, 497-502. Suffet, I.H., McGuire, M.J., 1980. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor Science. Teel, A.L., Cutler, L.M., Watts, R.J., 2009. Effect of sorption on contaminant oxidation in activated persulfate systems. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 44, 1098-1103. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 14, 145-156. Toledo, L.C., Silva, A.C.B., Augusti, R., Lago, R.M., 2003. Application of Fenton''s reagent to regenerate activated carbon saturated with organochloro compounds. Chemosphere 50, 1049-1054. USEPA, 1998. Permeable reactive barrier technologies for contaminant remediation. United States Environmental Protection Agency EPA 600-R-98-125. USEPA, 2001. A citizen''s guide to chemical oxidation. United States Environmental Protection Agency EPA 542-F-01-013. USEPA, 2004. Technologies for treating MTBE and other fuel oxygenates. United States Environmental Protection Agency EPA 542-R-04-009. USEPA, 2006. In situ chemical oxidation. United States Environmental Protection Agency EPA 600-R-06-072. Weeks, K., Bruell, C., Mohanty, N., 2000. Use of Fenton''s reagent for the degradation of TCE in aqueous systems and soil slurries Soil & Sediment Contamination 9. Wibowo, N., Setyadhi, L., Setiawan, J., Ismadji, S., 2007. Adsorption of benzene and toluene from aqueous solution onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. Journal of Hazardous Materials 146, 237-242. Wilhelm, M.J., Adams, V.D., Curtis, J.G., Middlebrooks, E.J., 2002. Carbon adsorption and air-stripping removal of MTBE from river water. Journal of Environmental Engineering 128, 813-823. Wu, T., Cruz, V., Mezyk, S., Cooper, W.J., O''Shea, K.E., 2002. Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways. Radiation Physics and Chemistry 65, 335-341. Xu, X.-R., Zhao, Z.-Y., Li, X.-Y., Gu, J.-D., 2004. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton''s reagent. Chemosphere 55, 73-79. Yu, J.T., Huang, Y.S., Tsay, M.Y., 1994. Photo-electron paramagnetic resonance investigation of the Cr3+ impurity and the (SCl)2- defect in synthetic FeS2 crystals. Journal of Applied Physics 75, 5282-5285. Yu, L., Adams, C., Ludlow, D., 2005. Adsorption isotherms for methyl tert-butyl ether and other fuel oxygenates on two bituminous-coalactivated carbons. Journal of Environmental Engineering 131, 983-987. Zazo, J.A., Casas, J.A., Mohedano, A.F., Rodriguez, J.J., 2006. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental 65, 261-268. 行政院勞工委員會, 2008. 物質安全資料表. 行政院環境保護署, 2007. 96年度土壤及地下水污染整治年報. 土壤及地下水污染整治基金管理委員會. 行政院環境保護署, 2009a. 公告之毒性化學物質一覽表. http://www.epa.gov.tw/ch/SitePath.aspx?busin=324&path=1702&list=1702. 行政院環境保護署, 2009b. 全國加油站及大型儲槽土壤及地下水污染潛勢調查. http://sgw.epa.gov.tw/public/0502.asp. 行政院環境保護署, 2009c. 列管場址查詢. http://sgw.epa.gov.tw/public/index.asp. 邱煥宗, 2005. 奈米碳管吸附水中二價鋅離子之研究. 國立中興大學環境工程學系碩士論文. 張巍, 應維琪, 常啟剛, 蔣文新, 戴偉娣, 蔣劍春, 2007. 水處理活性碳吸附性能指標的表徵與應用. 中國環境科學 27, 289-294. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 23, 13-20. 經濟部能源局, 2009. 98年11月份各縣市汽車加油站汽柴油銷售統計表. http://www.moeaec.gov.tw/opengovinfo/Plan/oilgas/WorkStatisticsOG.aspx. 劉俊延, 2007. 過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究. 國立成功大學環境工程學系碩士論文.
摘要: 甲基第三丁基醚(Methyl tert-butyl ether, MTBE)為汽油之添加劑,此物質具低辛醇-水界面分佈係數與高水溶性之特性,因此一旦洩漏至地表下,相較於其他汽油中之化合物更易溶解於地下水中而污染水源。透水性反應牆(permeable reactive barriers, PRBs)為反應介質組成之地表下屏障,可現地控制或破壞地下水中污染物,活性碳(activated carbon, AC)因具吸附能力,為可應用於PRB之填充材質,然而當活性碳吸附達飽和時,若能於現地直接進行活性碳再生,即可減少更換PRB填充材質之成本。現地化學氧化法(in situ chemical oxidation, ISCO)使用過硫酸鹽(S2O82-),藉由其活化反應後產生之硫酸根自由基(SO4-‧)為一有效氧化降解污染物之程序,因此本研究評估過硫酸鹽降解MTBE之能力,且探究以氧化方式再生吸附MTBE之活性碳其吸附效能影響。所有實驗皆以批次方式進行,實驗結果顯示,過硫酸鹽可使吸附於活性碳之MTBE幾乎達完全之脫附,然而經過硫酸鹽氧化後,活性碳表面生成之酸性官能基對於MTBE再吸附造成阻礙。此外,黃鐵礦(FeS2)為一種填充於PRB中之天然鐵礦,其可緩慢釋放二價鐵離子(Fe2+)活化過硫酸鹽產生SO4-‧,並完全氧化降解MTBE,MTBE降解過程中則會產生中間產物第三丁醇(TBA)、第三甲酸丁酯(TBF)、丙酮(Acetone)、乙酸甲酯(MA)等,推論其降解途徑主要為α攫取作用,且由黃鐵礦活化過硫酸鹽予以再生之活性碳對於MTBE之再吸附較僅以S2O82-再生之活性碳為佳。
Methyl tert-butyl ether (MTBE) is used primarily as a gasoline oxygenate. Due to low octanol water partition coefficient (Kow) and high water solubility, MTBE once accidently released in subsurface may contaminate groundwater. Permeable reactive barriers (PRBs) filled with reactive materials could intercept and decontaminate the polluted groundwater plume in the subsurface. Activated carbons (AC) adsorption is a suitable reaction mechanism for PRBs. However, once the filled ACs is exhausted, it is required to replace the spent AC with new materials. Therefore, it is desired to regenerate spent AC in situ and hence to reduce the cost for AC replacement. In situ chemical oxidation (ISCO) oxidant persulfate (S2O82-) and its activated product known as the sulfate free radical (SO4-‧) exhibit capability of destroying organic contaminants. Therefore, the goal of this study was to evaluate the degradation of MTBE by persulfate and investigate the potential of using persulfate for regeneration MTBE spent AC. All experiments were carried out in batch mode. The results show that persulfate can desorb MTBE from spent AC. However, upon contacts between AC and persulfate, acidic functional groups would be produced on the AC to interfere adsorption of MTBE. Pyrite (FeS2) is a natural ferrous ion bearing mineral which can slowly release Fe2+ to activate persulfate to form SO4-‧. It has been identified that pyrite activated persulfate oxidation can effectively oxidize MTBE and the reaction pathway undergoes α-abstraction process. Furthermore, the observed intermediates upon MTBE degradation include: tert-butyl formate (TBF), tert-butyl alcohol (TBA), acetone, and methyl acetate (MA). Spent ACs regenerated by pyrite activated persulfate exhibits a better readsorption of MTBE than those regenerated by persulfate only.
URI: http://hdl.handle.net/11455/5559
其他識別: U0005-0102201012252700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0102201012252700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.