Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5601
標題: 以蔗糖為基質之400 L模廠醱酵產氫系統之菌群結構與產氫酵素分析
Microbial community structure and mRNA-hydrogenase expression of a sucrose-feeding fermentative hydrogen production pilot scale bioreactor
作者: 吳宗翰
Wu, Tsung-Han
關鍵字: pilot-scale CSTR
大體積CSTR
Clostridum
PCR-DGGE
Real time RT-PCR
hydrogenase
梭狀芽孢桿菌
PCR-DGGE
Real time RT-PCR
產氫酵素
出版社: 環境工程學系所
引用: 圖書 吳石乙, 白景成, 林期能, 和陳政群 (2004) 生質產氫之三相流反應器介紹. 化工技術 12: 129-146. 吳耿東, 和李宏台 (2007) 全球生質能源應用現況與未來展望. 林業研究專訊: 5-9. 許駿發 (1998) 工業技術人才培訓計畫講義-高溫丁醇發酵之理論與應用. 台北: 經濟部工業局. 陳國誠 (1998) 微生物固定化技術在廢水處理的應用. 工業污染防治: 1-23. 蔡文城 (1984) 應用臨床微生物診斷. 九州出版社. 台北 雷敏宏 (2001) 未來氫能源供應策略. 能源季刊: 31. 論文集 吳石乙, 林奇賢, 黃俊榮, 許秉叡, 林棋能, 和張嘉修 (2005) 崩潰型生物可分解塑膠生物產氫可行性評估. 第十七屆環工年會廢水研討會: 113. 曾姿錦, 陳文明, 和張嘉修 (2004) 以兼性厭氧菌Klebsiella sp.進行厭氧醱酵產氫. 第二十九屆環工年會廢水研討會: 1-2. 論文 王美雲 (2007) 以定量PCR技術監測Clostridium butyricum CGS5的產氫酵素與Caldimonas taiwanensis On1T的澱粉水解酵素之基因表. 國立成功大學化學工程學系. 博士論文. 王淑亭 (2008) 厭氧產氫顆粒污泥形成過程中微生物結構變化. 中興大學環境工程學系. 碩士論文. 白明德 (1998) 厭氧生物產氫機制與程序操作策略之研究. 國立成功大學. 碩士論文. 余憲忠 (2005) 以流氏細胞儀偵測厭氧產氫醱酵系統中微生物產氫活性. 國立中興大學生命科學系. 碩士論文. 李國興 (2004) 以顆粒污泥程序進行高速厭氧醱酵產氫. 逢甲大學化學工程系. 博士論文. 官荻偉 (2007) 探討顆粒性厭氧產氫反應槽中各微生物組成關係對產氫效能之影響. 中興大學環境工程學系. 碩士論文. 許淳鈞 (2001) 利用混合特定菌種生產氫氣之研究. 國立中央大學化學工程研究所 碩士論文. 陳欣微 (2005) 完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析. 國立中興大學環境工程研究所. 碩士論文. 黃郁欣 (2005) 以創新之攪拌式顆粒污泥床進行厭氧醱酵產氫. 逢甲大學化學工程學所. 碩士論文. 葉韋志 (2004) 不同高徑生物反應器對固定化細胞醱酵產氫之影響. 逢甲大學化學工程學所. 碩士論文. 廖珮瑜 (2007) 以澱粉為基質之醱酵產氫系統菌群結構分析. 中興大學環境工程學系. 碩士論文. 鄭如琇 (2006) 以微生物組成探討厭氧醱酵系統之產氫效能. 國立中興大學環境工程研究所. 碩士論文. 英文文獻 Adams, W, M., Eccleston, E., and Howard (1989) Iron-Sulfur Clusters of Hydrogenase I and Hydrogenase II of Clostridium pasteurianum. PNAS 86: 4932-4936 Albracht, S., and J., P. (2001) Spectroscopy-the Functional Puzzle In: Hydrogen as a Fuel: Learning from Nature. London and New York. Amsellem-Ouazana, D., Bieche, I., Tozlu, S., Botto, H., Debr, B., and Lidereau, R. (2006) Gene Expression Profiling of ERBB Receptors and Ligands in Human Transitional Cell Carcinoma of the Bladder. The Journal of Urology 175: 1127-1132. Armor, J.N. (1999) The Multiple Roles for Catalysis in the Production of H2. Applied Catalysis A: General 176: 159-176. Arooj, M.F., Han, S.-K., Kim, S.-H., Kim, D.-H., and Shin, H.-S. (2007) Sludge Characteristics in Anaerobic SBR System Producing Hydrogen Gas. Water Research 41: 1177-1184. Baronofsky, J.J., Schreurs, W.J.A., and Kashket, E.R. (1984) Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum. Applied and Environmental Mircoblogy 48: 1134-1139. Brock, T.D., Madigan, M.T., Martiko, J.M., and Parker, J. (1994) Biology of Microorganisms: Pretice-Hall. Cammack, and R. (2001) Origins, Evolution and the Hydrogen Biosphere. Taylor, Francis, London and New York. Cato, E.P., Moore, W.L., and Finegold (1986) Genus Clostridium. Bergey''s Manual of Systematic Bacteriology 2: 1141-1200. Chang, F.-Y., and Lin, C.-Y. (2004) Biohydrogen Production Using an Up-Flow Anaerobic Sludge Blanket Reactor. International Journal of Hydrogen Energy 29: 33-39. Chang, J.-S. (2007) Continuous Biohydrogen Production from Starch with Granulated Mixed Bacterial Microflora. Energy & Fuels 22: 93-97. Chang, J.J., Chen, W.E., Shih, S.Y., Yu, S.J., Lay, J.J., Wen, F.S., and Huang, C.C. (2006) Molecular Detection of the Clostridia in an Anaerobic Biohydrogen Fermentation System by Hydrogenase Mrna-Targeted Reverse Transcription-PCR. Applied Microbial and Cell Physiology 70: 598-604. Chen, C.C., Lin, C.Y., and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology 57: 56-64. Chen, J.-S., and Mortenson, L.E. (1974) Purification and Properties of Hydrogenase from Clostridium pasteurianum W5. Biochimica et Biophysica Acta (BBA) - Protein Structure 371: 283-298. Chen, X., Sun, Y., Xiu, Z., Li, X., and Zhang, D. (2006) Stoichiometric Analysis of Biological Hydrogen Production by Fermentative Bacteria. International Journal of Hydrogen Energy 31: 539-549. Collet, C., Adler, N., Schwitzguebel, J.-P., and Peringer, P. (2004) Hydrogen Production by Clostridium thermolacticum During Continuous Fermentation of Lactose. International Journal of Hydrogen Energy 29: 1479-1485. Costello, D.J., Greenfield, P.F., and Lee, P.L. (1991) Dynamic Modelling of a Single-Stage High-Rate Anaerobic Reactor-I. Model Derivation. Water Research 25: 847-858. Czuppon, T.A., Knez , S.A., and Newsome, D.S. (1996) Othmer Encyclopedia of Chemical Technology. Dabrock, B., Bahl, H., and Gottschalk, G. (1992) Parameters Affecting Solvent Production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58: 1233-1239. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13-28. Ed W. J. van Niel, P.A.M.C., Alfons J. M. Stams, (2003) Substrate and Product Inhibition of Hydrogen Production by the Extreme Thermophile, Caldicellulosiruptor saccharolyticus. Biotechnology and Bioengineering 81: 255-262. Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2004) Acetone Butanol Ethanol (ABE) Production from Concentrated Substrate: Reduction in Substrate Inhibition by Fed-Batch Technique and Product Inhibition by Gas Stripping. Applied Microbiology and Biotechnology 63: 653-658. Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2005) Continuous Butanol Fermentation and Feed Starch Retrogradation: Butanol Fermentation Sustainability Using Clostridium beijerinckii Ba101. Journal of Biotechnology 115: 179-187. Fabiano, B., and Perego, P. (2002) Thermodynamic Study and Optimization of Hydrogen Production by Enterobacter aerogenes. International Journal of Hydrogen Energy 27: 149-156. Fang, H., Zhang, T., and Liu, H. (2002a) Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge. Applied Microbiology and Biotechnology 58: 112-118. Fang, H.H.P., Liu, H., and Zhang, T. (2002b) Characterization of a Hydrogen-Producing Granular Sludge. Biotechnology and Bioengineering 78: 44-52. Fang, H.H.P., Zhang, T., and Li, C. (2006) Characterization of Fe-Hydrogenase Genes Diversity and Hydrogen-Producing Population in an Acidophilic Sludge. Journal of Biotechnology 126: 357-364. Fascetti, E., and Todini, O. (1995) Rhodobacter sphaeroides RV Cultivation and Hydrogen Production in a One- and Two-Stage Chemostat. Applied Microbiology and Biotechnology 44: 300. Franks, A.H., Harmsen, H.J., Raangs, G.C., Jansen, G.J., Schut, F., and Welling, G.W. (1998) Variations of Bacterial Populations in Human Feces Measured by Fluorescent in Situ Hybridization with Group-Specific 16s rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Mircoblogy 64: 3336-3345. Freni, S., Calogero, G., and Cavallaro, S. (2000) Hydrogen Production from Methane through Catalytic Partial Oxidation Reactions. Journal of Power Sources 87: 28-38. Girbal, L., Vasconcelos, I., and Soucaille, P. (1994) Transmembrane pH of Clostridium acetobutylicum Is Inverted (More Acidic inside) When the in Vivo Activity of Hydrogenase Is Decreased. J. Bacteriol. 176: 6146-6147. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995) Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287-297. Gorwa, M., Croux, C., and Soucaille, P. (1996) Molecular Characterization and Transcriptional Analysis of the Putative Hydrogenase Gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178: 2668-2675. Gottschalk, G. (1986) Bacterial Metabolism. New York: Springer-Verlag Gray, C.T., and Gest, H. (1965) Biological Formation of Molecular Hydrogen. Science 148: 186-192. Hallenbeck, P.C., and Benemann, J.R. (2002) Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy 27: 1185-1193. Haruhiko, Y., Tadafumi, T., Jun, H., Sachio, H., and Yoshiyuki, T. (1998) H2 Production from Starch by a Mixed Culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters 143-147. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. International Journal of Hydrogen Energy 27: 1339-1347. Husemann, M.H.W., and Papoutsakis, E.T. (1989) Solventogenesis In Clostridium acetobutylicum Fermentations Related to Carboxylic Acid and Proton Concentrations. Biotechnol. Bioeng 30: 585~595. Hussy, I., Hawkes, F.R., Dinsdale, R., and Hawkes, D.L. (2003) Continuous Fermentative Hydrogen Production from a Wheat Starch Co-Product by Mixed Microflora. Biotechnology Bioengineering 31: 683-692. Hussy, I., Hawkes, F.R., Dinsdale, R., and Hawkes, D.L. (2005) Continuous Fermentative Hydrogen Production from Sucrose and Sugarbeet. International Journal of Hydrogen Energy 30: 471-483. Jo, J.H., Lee, D.S., and Park, J.M. (2008a) The Effects of pH on Carbon Material and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1. Bioresource Technology 99: 8485-8491. Jo, J.H., Lee, D.S., Park, D., and Park, J.M. (2008b) Biological Hydrogen Production by Immobilized Cells of Clostridium tyrobutyricum JM1 Isolated from a Food Waste Treatment Process. Bioresource Technology 99: 6666-6672. Jones, D.T., and Woods, D.R. (1986) Acetone-Butanol Fermentation Revisited. Microbiology Reviews 50: 484-524. Junelles, A.M., Janati-Idrissi, R., Petitdemange, H., and Gay, R. (1988) Iron Effect on Acetone-Butanol Fermentation. Current Microbiology 17: 299-303. Kaluzhnyi, V., S., Danilovich, A., D., Nozhevnikova, and N., A. (1991) Anaerobic Biological Treatment of Wastewaters. In biotechnol. Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori, Y., Fukui, T., Atomi, H., and Imanaka, T. (2005) Continuous Hydrogen Production by the Hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology 116: 271-282. Kapdan, I.K., and Kargi, F. (2006) Bio-Hydrogen Production from Waste Materials. Enzyme and Microbial Technology 38: 569-582. Kataoka, N., Miya, A., and Kiriyama, K. (1997) Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Water Science and Technolog 36: 41-47. Kato, S., Shin, H., Zong, J.C., Masaharu, I., and Yasuo, I. (2004) Effective Cellulose Degradation by a Mixed-Culture System Composed of a Cellulolytic Clostridium and Aerobic Non-Cellulolytic Bacteria. FEMS Microbiology Ecology 51: 133-142. Kawasaki, S., Nakagawa, T., Nishiyama, Y., Benno, Y., Uchimura, T., Komagata, K., Kozaki, M., and Niimura, Y. (1998) Effect of Oxygen on the Growth of Clostridium butyricum (type species of the genus Clostridium), and the Distribution of Enzymes for Oxygen and for Active Oxygen Species in Clostridia. Journal of Fermentation and Bioengineering 86: 368-372. Kim, D.-H., Kim, S.-H., Ko, I.-B., Lee, C.-Y., and Shin, H.-S. (2008) Start-up Strategy for Continuous Fermentative Hydrogen Production: Early Switchover from Batch to Continuous Operation. International Journal of Hydrogen Energy 33: 1532-1541. Kyazze, G., Martinez-Perez, N., Dinsdale, R., Premier, G.C., Hawkes, F.R., Guwy, A.J., and Hawkes, D.L. (2006) Influence of Substrate Concentration on the Stability and Yield of Continuous Biohydrogen Production. Biotechnology and Bioengineering 93: 971-979. Kim, J.O., Kim, Y.H., Ryu, J.Y., Song, B.K., Kim, I.H., and Yeom, S.H. (2005) Immobilization Methods for Continuous Hydrogen Gas Production Biofilm Formation Versus Granulation. Process Biochemistry 40: 1331-1337. Kim, S.-H., Han, S.-K., and Shin, H.-S. (2006) Effect of Substrate Concentration on Hydrogen Production and 16s rDNA-Based Analysis of the Microbial Community in a Continuous Fermenter. Process Biochemistry 41: 199-207. Klein, D. (2002) Quantification Using Real-Time Pcr Technology: Applications and Limitations. Trends in Molecular Medicine 8: 257-260. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L. (2002) Sustained Hydrogen Photoproduction by Chlamydomonas reinhardtii: Effects of Culture Parameters. Biotechnology and Bioengineering 78: 731-740. Lamed, R.J., Lobos, J.H., and Su, T.M. (1988) Effects of Stirring and Hydrogen on Fermentation Products of Clostridium Thermocellum. Applied and Environmental Mircoblogy 54: 1216-1221. Lay, J.J., Lee, Y.J., and Noiko, T. (1999) Feasibility of Biologocal Hydrogen Product from Organic Fraction of Municipal Solid Waste. Water Research 11: 2569-2586. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2004) Anaerobic Hydrogen Production with an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering 87: 648-657. Lee, Y.J., Miyahara, T., and Noike, T. (2002) Effect of pH on Microbial Hydrogen Fermentation. Journal of Chemical Technology & Biotechnology 77: 694-698. Lettinga, G., Velsen, A.F.M., Hobma, S.W., Zeeuw, W., and Klapwijk, A. (1980) Use of the Upflow Sludge Using Activated-Carbon Supported Packed-Bed Biological Wastewater Treatment. Biotechnology and Bioengineering 22: 699-734. Levin, D.B., Pitt, L., and Murray, L. (2004) Biohydrogen Production: Prospects and Limitations to Practical Application. International Journal of Hydrogen Energy 29: 173-185. Levin, D.B., Islam, R., Cicek, N., and Sparling, R. (2006) Hydrogen Production by Clostridium thermocellum 27405 from Cellulosic Biomass Substrates. International Journal of Hydrogen Energy 31: 1496-1503. Lin, C.-Y., and Chang, R.-C. (2004) Fermentative Hydrogen Production at Ambient Temperature. International Journal of Hydrogen Energy 29: 715-720. Lin, C.L., and Fang, H.H.P. (2007) Fermentative Hydrogen Production from Wastewater and Solid Wastes by Mixed Cultures. Environmental Science and Technology 37: 1-39. Lin, C.Y., and Chang, R.C. (1999) Hydrogen Production During the Anaerobic Acidogenic Conversion of Glucose. Journal of Chemical Technology & Biotechnology 74: 498-500. Lin, C.Y., and Lay, C.H. (2005) A Nutrient Formulation for Fermentative Hydrogen Production Using Anaerobic Sewage Sludge Microflora. International Journal of Hydrogen Energy 30: 285-292. Liu, G., and Shen, J. (2004) Effects of Culture and Medium Conditions on Hydrogen Production from Starch Using Anaerobic Bacteria. Journal of Bioscience and Bioengineering 98: 251-256. Ljungdahl, G., L., Hugenholtz, J., and Wiegel (1989) Acetogenic and Acid-Producting Bacteria. . New York. Lomon, J., B., peter, and W., J. (1999) Binding of Exogenously Added Carbon Monoxide at Active Site of the Iron-Only Hydrogenase (Cpi) Form Clostridium pasteurianum. Biochem. 38: 12969-12973. Long, M.N., Huang, J.L., Wu, X.B., Xu, H.J., Chen, J.Z., Long, C.N., Zhu, F.Z., and Xu, L.H. (2005) Solation and Characterization of a High H2-Producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology 156: 76-81. Lovitt, R.W., Longin, R., and Zeikus, J.G. (1984) Ethanol Production by Thermophilic Bacteria: Physiological Comparison of Solvent Effects on Parent and Alcohol-tolerant Strains of Clostridium thermohydrosulfuricum. Applied and Environmental Mircoblogy 48: 171-177. Lovitt, R.W., Shen, G.J., and Zeikus, J.G. (1988) Ethanol Production by Thermophilic Bacteria: Biochemical Basis for Ethanol and Hydrogen Tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815. Madigan, M.T., and Martinko, J.M. (2006) Brock: Biology of Microorganisms. USA: Prentice Hall International. McCarty, Mosey, L., P., and E, F. (1991) Modeling of Anaerobic Digestion Processes (Discussion of Concepts). Water Sci. Technol 24: 19-33. Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000) Sustained Photobiological Hydrogen Gas Production Upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiology 122: 127-136. Minnan, L., Jinli, H., Xiaobin, W., Huijuan, X., Jinzao, C., Chuannan, L., Fengzhang, Z., and Liangshu, X. (2005) Isolation and Characterization of a High H2-Producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology 156: 76-81. Mitchell, R.J., Kim, J.-S., Jeon, B.-S., and Sang, B.-I. (2009) Continuous Hydrogen and Butyric Acid Fermentation by Immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the Glucose Concentration and Hydraulic Retention Time. Bioresource Technology 100: 5352-5355. Miyake, J., and Kawamura, S. (1987) Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter sphaeroides. International Journal of Hydrogen Energy 12: 147-149. Miyake, J., Miyake, M., and Asada, Y. (1999) Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology 70: 89-101. Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K. (2005) Overexpression of a Hydrogenase Gene in Clostridium paraputrificum to Enhance Hydrogen Gas Production. FEMS Microbiology Letters 246: 229-234. Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogenase: An Overview. Critical Reviews in Microbiology 24: 61-84. Nath, K., and Das, D. (2004) Improvement of Fermentative Hydrogen Production: Various Approaches. Applied Microbiology and Biotechnology. 65: 520-529. Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy, K. (2006a) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology 87: 461-472. Oh, Y.-K., Kim, S.H., Kim, M.-S., and Park, S. (2004) Thermophilic Biohydrogen Production from Glucose with Trickling Biofilter. Biotechnology and Bioengineering 88: 690-698. O''Brien, R.W., and Morris, J.G. (1971) Oxygen and the Growth and Metabolism of Clostridium acetobutylicum. Journal of General Microbiology 68: 307-318. Patil, P., De Abreu, Y., and Botte, G.G. (2006) Electrooxidation of Coal Slurries on Different Electrode Materials. Journal of Power Sources 158: 368-377. Payne, M.J., Chapman, A., and Cammack, R. (1993) Evidence for an [Fe]-Type Hydrogenase in the Parasitic Protozoan Trichomonas Vaginalis. FEBS Letters 317: 101-104. Perry, R.D., and SAN Clemente, C.L. (1979) Siderophore Synthesis in Klebsiella pneumoniae and Shigella sonnei During Iron Deficiency. Bacteriology 140: 1129-1132. Peters, W., J., Lanzilotta, N., W., Lemon, J., B., and Seefeldt (1998) X-Ray Crystal Structure of the Fe-Only Hydrogenase (Cpi) from Clostridium pasteurianum to 1.8 Angstrom Resolution. PNAS 282: 1853-1858. Ramachandran, R., and Menon, R.K. (1998) An Overview of Industrial Uses of Hydrogen.International Journal of Hydrogen Energy 23: 593. Robson, and R. (2001) Biodiversity of Hydrogenase. Taylor, Francis, London and New York. Sleat, R., Mah, R., and Robinson, R. (1984) Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans Sp.Nov. Applied and Environmental Mircoblogy 48: 88-93. Solomon, B.O., Zeng, A.P., Biebl, H., Schlieker, H., Posten, C., and Deckwer, W.D. (1995) Comparison of the Energentic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella pneumoniae and Clostridium butyricum During Anaerobic Growth on Glycerol. Biotechnology 39: 107-117. Storz, G., Tartaglia, L.A., Farr, S.B., and Ames, B.N. (1990) Bacterial Defenses against Oxidative Stress. Trends in Genetics 6: 363-368. Suzuki, Y. (1982) On Hydrogen as Fuel Gas. International Journal of Hydrogen Energy 7: 227-230. Sveshnikov, D.A., Sveshnikova, N.V., Rao, K.K., and Hall, D.O. (1997) Hydrogen Metabolism of Mutant Forms of Anabaena Variabilis in Continuous Cultures and under Nutritional Stress. FEMS Microbiology Letters 147: 297-301. Take, T., Tsurutani, K., and Umeda, M. (2007) Hydrogen Production by Methanol-Water Solution Electrolysis. Journal of Power Sources 164: 9-16. Tanisho, S., and Ishiwata, Y. (1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy 19: 807-812. Tanisho, S., Kamiya, N., and Wakao, N. (1989) Hydrogen Evolution of Enterobacter aerogenes Depending on Culture pH: Mechanism of Hydrogen Evolution from NADH by Means of Membrane-Bound Hydrogenase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 973: 1-6. Tanisho, S., Kuromoto, M., and Kadokura, N. (1998) Effect of CO2 Removal on Hydrogen Production by Fermentation. International Journal of Hydrogen Energy 7: 559-563. Terracciano, J.S., Schreurs, W.J.A., and Kashket, E.R. (1987a) Membrane H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53: 782-786. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001) Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. Journal of Bioscience and Bioengineering 92: 397-400. van Andel, J., Zoutberg, G., Crabbendam, P., and Breure, A. (1985) Glucose Fermentation by Clostridium butyricum Grown under a Self Generated Gas Atmosphere in Chemostat Culture. Applied Microbiology and Biotechnology 23: 21-26. Van Ginkel, S.W., and Logan, B. (2005a) Inhibition of Biohydrogen Produciton by Undissociated Acetic and Butyric Acids. Environ Sci Technol 39: 9351-9356. Van Ginkel, S.W., and Logan, B. (2005b) Increased Biological Hydrogen Production with Reduced Organic Loading. Water Research 39: 3819-3826. Vasconcelos, I., Girbal, L., and Soucaille, P. (1994) Regulation of Carbon and Electron Flow in Clostridium acetobutylicum Grown in Chemostat Culture at Neutral pH on Mixtures of Glucose and Glycerol. Journal of Bacteriology 176: 1443-1450. Vavilin, V.A., Rytow, S.V., and Lokshina, L.Y. (1995) Modelling Hydrogen Partial Pressure Change as a Result of Competition between the Butyric and Propionic Groups of Acidogenic Bacteria. Bioresource Technology 54: 171-177. Vavilin, V.A., Vasiliev, V.B., Ponomarev, A.V., and Rytow, S.V. (1994) Simulation Model Methane as a Tool for Effective Biogas Production During Anaerobic Conversion of Complex Organic Matter. Bioresource Technology 48: 1-8. Vedernikov, Y.P., Betancourt, A., Wentz, M.J., Saade, G.R., and Garfield, R.E. (2006) Adaptation to Pregnancy Leads to Attenuated Rat Uterine Artery Smooth Muscle Sensitivity to Oxytocin. American Journal of Obstetrics and Gynecology 194: 252-260. Veziroglu, T.N. (1995) Twenty Years of the Hydrogen Movement 1974-1994. International Journal of Hydrogen Energy 20: 1-7. Wang, G., and Wang, D.I.C. (1984) Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum. Applied and Environmental Mircoblogy 47: 294-298. Wang, M.-Y., Tsai, Y.-L., Olson, B.H., and Chang, J.-S. (2008) Monitoring Dark Hydrogen Fermentation Performance of Indigenous Clostridium butyricum by Hydrogenase Gene Expression Using RT-PCR and qPCR. International Journal of Hydrogen Energy 33: 4730-4738. Wu, S.-Y., Hung, C.-H., Lin, C.-N., Chen, H.-W., Lee, A.-S., and Chang, J.-S. (2006) Fermentative Hydrogen Production and Bacterial Community Structure in High-Rate Anaerobic Bioreactors Containing Silicone-Immobilized and Self-Flocculated Sludge. Biotechnology and Bioengineering 93: 934-946. Xu, L., Ren, N., Wang, X., and Jia, Y. (2008) Biohydrogen Production by Ethanoligenens Harbinense B49: Nutrient Optimization. International Journal of Hydrogen Energy 33: 6962-6967. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., and Takasaki, Y. (1997) H2 Production by Immobilized Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques 11: 136-143. Zellner, G., Neud fer, F., and Diekmann, H. (1994) Degradation of Lactate by an Anaerobic Mixed Culture in a Fluidized-Bed Reactor. Water Research 28: 1337-1340. Zhang, T., Liu, H., and Fang, H.H.P. (2003) Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management 69: 149-156. Zhang, Y., and Shen, J. (2006) Effect of Temperature and Iron Concentration on the Growth and Hydrogen Production of Mixed Bacteria. International Journal of Hydrogen Energy 31: 441-446. Zhu, Y., and Yang, S.-T. (2004) Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157.
摘要: 國際上研究生物產氫技術已有數十年的歷史,對於厭氧暗醱酵之研究理論基礎已趨於完備,為了加強其實際應用,發展模場規模之反應槽操作技術並朝向實用化應用實屬必須。中興大學環工系環境生物技術實驗室針對「逢甲大學產氫團隊」所架設之實驗室規模之生物醱酵產氫反應槽進行菌群結構分析,目前已清楚暸解此類系統操作在不同環境下菌相組成及優勢菌種的數量。其結果顯示在不同的操作條件下,系統菌群結構包含了Clostridium sp.、Klebsiella sp.、Bifidobacterium sp.及Streptococcus sp.等菌群存在,且菌種數量多寡與產氫效能的優劣有密切的相關性。因此,本研究乃利用PCR-DGGE、Real-time PCR、Real time RT-PCR等分子生物技術,針對逢甲產氫團隊所架設之具商業規模400 L大體積CSTR厭氧醱酵反應槽進行菌群結構、目標菌群數量、比例及產氫酵素表現分析,以探討對其產氫效能之影響關係,期待能建立產氫關鍵性技術以協助發展啟動具商業規模之生物產氫系統。 由菌群結構分析結果顯示,成功啟動產氫反應槽後,當系統pH值控制為6.0至7.0之間時,其Clostridium族群以C. butyricum及C. pasteurianum同時存在,但當pH值穩定控制在6.0以下時C. pasteurianum成為主要產氫菌,且在系統操作於高HRT下時間過長時,也容易生長出非優勢產氫族群導致系統產氫效能降低;而在縮短HRT至4 hr時,有助於系統將非優勢產氫菌洗出(wash out)使反應槽內菌群結構趨於單純,且再提昇至HRT為8 hr後,系統中菌群結構仍可維持較單純的狀態。從目標菌群數量分析結果可以發現,反應槽操作初期系統中非產氫族群佔了較高的比例,當系統趨於穩定時,Clostridium sp.便成為系統中主要優勢菌種且其數量約為108至109 copies/ng DNA且皆佔總菌數之70 %以上,而次要優勢菌種K. pneumoniae數量約為106至108 copies/ng DNA,且其數量、比例多寡明顯影響產氫速率之高低。比較未成功啟動及成功啟動反應槽的產氫酵素表現結果發現,污泥植種於初始pH值較低的環境下,Clostridium sp.具有較高的產氫基因表現,且以單一C. pasteurianum產氫基因表現較為顯著;而污泥植種於初始pH值過高時,將導致Clostridium sp.產氫基因表現低於偵測極限,待pH調整至中性環境後,系統中C. butyricum及C. pasteurianum的產氫基因表現量相當。
The study of biohydrogen production technology for theory of dark fermentation has been complete in the past decades. The courses of application for this technology will be turned to focus on a pilot-scale operating which was developed for the industrial hydrogen production in the future situation. In our present investigations, the research of microbial community structure in hydrogen production dark fermentation bioreactor, which the high rate hydrogen production system was constructed by Fen Chia University, the results shown that the hydrogen production efficiency were related to the present of four predominant bacterial species, including Clostridium sp., Klebsiella sp., Bifidobacterium sp. and Streptococcus sp.. Base on the viewpoint of bacteria factors, therefore, this study was focus on the microbial community structures and hydrogenase expression of a pilot scale bioreactor under different operating conditions by using molecular biological techniques, including PCR-DGGE, real-time PCR and real time RT-PCR which expect to set up the key technology of biohydrogen fermentation system for commercial application. According to analysis of microbial composition by PCR-DGGE, the results were shown that the C. butyricum and C. pasteurianum were coexist within pH 6.0-7.0, then if keeping at pH 5.5-6.0, C. pasteurianum was become predominate as hydrogen production species in the system. Meanwhile, the results also indicate that high HRT (12 h) operated in a long time was not benefit for hydrogen production, because it was increasing the substrate competitor existing such as several facultative anaerobes, whereas wash out of those species were present in HRT 4 h with performed the high hydrogen production rate, and keeping simply structure of bacteria composition as only C. pasteurianum surviving even if changes to HRT 8 h again. For the results of bacteria quantification by real-time PCR, high ratio of non-hydrogen production bacteria were existed in the system within initial operation. In the steady state, the amount of Clostridium sp. cell and its ratio per other microbial species were increasing to 108-109copies/ng DNA and over 70% respective. For the K. pneumoniae which the sub-dominant hydrogen production bacteria in the system, the cell count was around 106-108copies/ng DNA through the system operation. To comparing with the hydrogen production efficiency and variation of K. pneumoniae cell count, high ratio of this specie exist following with low hydrogen production rate, this result indicate that K. pneumoniae was a major substrate competitor to the hydrogen production species, C. pasteurianum. This study also uses the RT-qPCR technique to measure the hydrogenase (hydA) gene expression targeting two attentive Clostridium sp. through the system operation. Significant increasing of hydrogenase mRNA expressing of Clostridium sp. was observed in low pH conditions (5.5-6.0), and the high efficiency of hydrogen production was found to correlated with a high hydrogenase mRNA expressing of C. pasteurianum in the system.
URI: http://hdl.handle.net/11455/5601
其他識別: U0005-0502201019484500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502201019484500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.