請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5636
標題: 酸洗後垃圾焚化底渣去除染料水中色度之研究
Utilization of the Bottom Ash from Municipal-Solid-Waste Incinerator (MSWI) as Adsorbent for Removal of Methylene Blue
作者: 劉詩云
Liu, Shih-Yun
關鍵字: MSWI bottom ash
MSWI底渣
Acid
Methylene Blue (MB)
Dye removal
Kinetic process
Adsorption isotherm
酸化
再利用
等溫/動力吸附
亞甲基藍(MB)
出版社: 環境工程學系所
引用: 一、中文部分 1. 吳品漢 (2008)。以水洗法去除底渣氯鹽之可行性評估及底渣中重金屬相態變遷之探討。國立中興大學環境工程系碩士論文。 2. 吳芳禎、彭元興、陳宣佑、陳宇銘、楊逸婷 (2008)。蔗渣灰去除染料廢水色度之研究。中華民國環境工程學會,2008廢水處理技術研討會。 3. 李如傑、范文彬、楊超太 (2007)。利用水洗去除底渣氯鹽之研究。中華民國環境工程學會,2007廢棄物處理技術研討會。 4. 林育承 (2002)。燃煤底灰應用於污染去除之研究。私立逢甲大學土木及水利工程研究所碩士論文。 5. 林錫鈞、林志棟、姚志廷、蔣子平(2003)。應用於道路工程之焚化底灰貯存時間最佳化探討。第十二屆鋪面工程學術研討會。 6. 范文彬 (2006)。焚化爐底渣於道路工程之應用。綠營建材料再利用再生研討會。 7. 高平洲 (1998)。以飛灰去除水中氯酚之研究。中興大學環境工程學系碩士論文。 8. 袁菁、方湜惠、江姿幸、劉瑋婷、黃英哲 (2005)。垃圾焚化底渣再利用之前處理程序研究。中華民國環境工程學會,第三屆土壤與地下水研討會。 9. 陳育聖、李維峰 (2006)。垃圾焚化底渣於營建工程之應用。中華建築技術學刊,第三卷第一期,95-108。 10. 陳韋伶 (2004)。不同焚化爐底碴物化性質比較分析。國立中央大學土木工程研究所碩士論文。 11. 陳建旭、林桂儀、吳仁皓、侯清元 (2006)。分析垃圾焚化爐底碴應用於瀝青混凝土之可行性。第七屆鋪面材料再生學術研討會。建國科技大學。 12. 陳威錦 (2004)。熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究。國立中山大學環境工程研究所碩士論文。 13. 陳慶隆 (2005)。幾丁聚醣對廢水中含氯有機物與染料吸附之研究。私立朝陽科技大學環境與工程管理系碩士論文。 14. 張蕙蘭 (2003)。國外焚化底渣再利用介紹。永續產業發展雙月刊。節水省電及資源化。 15. 黃富昌 (2004)。土壤結構及化性對有機污染物吸/脫附特性之研究。國立中央大學環境工程研究所博士論文。 16. 黃韋翔 (2008)。廢棄茶葉粉去除水溶液中鹼性染料(Methylene blue)之吸附特性研究 。中華民國環境工程學會,2008廢水處理技術研討會。 17. 黃慈玲 (1999)。以飛灰去除染料及染料廢水之研究。國立中興大學環境工程系碩士論文。 18. 楊博淳 (2003)。以乙烯氧鍵吸附量測定蒙脫石表面積之研究。國立成功大學資源工程系碩士論文。 19. 蔡安東 (2007)。化學活化法製備孟宗竹活性碳製程之研究。國立雲林科技大學或學工程與材料工程所碩士論文。 20. 李家珍 (1998)。染料、染色工業廢水處理。化學工業出版社。 21. 小西謙三、黑木宜彥 (1997)。工業合成染料化學。復漢出版社。 22. 邱永亮 (1978)。染料之合成與特性。科學圖書大庫。徐氏基金會。 23. 甲級廢棄物清理訓練班 (2009),有害事業廢棄物中間處理技術。行政院環境保護署,訓練所。 24. 行政院環境保護署。環境資料庫-垃圾焚化廠飛灰底渣及掩埋資訊統計。上網瀏覽日期2009年,檢自http://edb.epa.gov.tw/envdb2/ 25. 中華民國行政院環境保護署。環境資料庫-資源回收統計。上網瀏覽日期2009年,檢自http://edb.epa.gov.tw/envdb2/ 26. 中華民國行政院環境保護署。環境資料庫-垃圾清運狀況。上網瀏覽日期2009 年,檢自http://edb.epa.gov.tw/envdb2/ 27. 中華民國行政院環境保護署。焚化廠管理系統-統計資料。環境督察總隊台北辦公室。上網瀏覽日期2009年,檢自http://ivy4.epa.gov.tw/swims/?ctype=B&cid=swims&oid=www 二、西文部分 1. Amin, N. K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, Vol. 165, pp. 52–62. 2. Aouada, G., Crovisiera, J. L., Damidotb, D., Stillea, P., Hutchensc, E., Muttererd, J., Meyere, J. M. & Geoffroye, V. A. (2008). Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeruginosa). Science of the Total Enviroment, Vol. 309, pp. 385-393. 3. Ambroise, J., Pera, J., Coutaz, L. & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, Vol. 27, pp. 1-5. 4. Badmus, M. A. O., Audu, T. O. K. &Anyata, B. U. (2007). Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus). Turkish J. Eng. Env. Sci., Vol. 31 , pp.251 – 263. 5. Basar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, B135, pp. 232–241. 6. Boaventura, R. A. R., Santos, S. C. R., Vilar, V. J. P. (2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, Vol. 153, pp. 999-1008. 7. Brunauer, S., Emmett, P. H. & Teller, E. (1938). Adsorption of gases inmultimolecular layers. J. Am. Chem. Soc., Vol. 60, pp. 309-319. 8. Cal, M. P. (1995). Characterization of gas phase adsorption capacity of untreated and chemically treated activated carbon cloths. University of Illinois at Urbana- Champaign, Ph. D. thesis, Illinois. 9. Christensen, T. H., Tüchsen, P. L. & Bendz, D. (2007). The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles. Journal of Contaminant Hydrology, Vol. 94, pp. 178-194. 10. Comans, R. N. J., Dijkstra, J. J., Meeussen, J. C. L. & Van der Sloot, H. A. (2008). A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash. Applied Geochemistry. Gepubliceerd in Applied Geochemistry, Vol. 23, pp. 1544-1562. 11. Devi, R. & Dahiya, R. P. (2008). COD and BOD removal from domestic wastewater generated in decentralised sectors. Bioresource Technology, Vol. 99, pp. 344-349. 12. Dincer, A. R., Gu nes, Y., Karakaya, N. & Gu nes, E. (2007a). Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology, Vol. 98, pp. 834-839. 13. Dincer, A. R., Gu nes, Y. & Karakaya, N. (2007b). Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. Journal of Hazardous Materials, Vol. 141, pp. 529-535. 14. Ducom, G., Rendek, E. & Germain, P. (2007). Assessment of MSWI bottom ash organic carbon behavior: A biophysicochemical approach. Chemosphere, Vol. 67, pp. 1582-1587. 15. Espiell, F., Chimenos, J. M., Segarra, M. & Fernan dez M. A. (1999 ). Characterization of the bottom ash in municipal solid waste incinerator.Journal of Hazardous Materials, Vol. 64, pp. 211-222. 16. Jaycok M. J. and Parfitt G. D.(1981). In Chemistry of interfaces. Ellis Horwood Limited, New York. 17. Gallice, P. M., Chaspoul, F. R., Droguene, M. F. L., Barban, G. & Rose, J. C. (2007). A role for adsorption in lead leachability from MSWI bottom ash. Waste Management. Vol. 28, pp. 1324-1330. 18. Guo, C. & Gemeinhart, R. A. (2008). Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. European Journal of Pharmaceutics and Biopharmaceutics, Vol. 70, pp. 597–604. 19. Gupta, V. K., Mittal, A. & Gajbe, V. (2005). Adsorption and desorption studies of a water soluble dye, Quinoline yellow, using waste materials. Journal of Colloid and Interface Science, Vol. 284, pp. 89-98. 20. Gupta, V. K. & Suhas. (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, Vol. 90, pp. 2313–2342. 21. Gupta, V. K., Mittal, A., Malviya, A. & Mittal, J. (2008a). Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil yellow) by adsorption over waste materials (Bottom ash and de-oiled soya). Journal of Hazardous Materials, Vol. 151, pp. 821-832. 22. Gupta, V. K., Mittal, A., Gajbe, V. & Mittal, J. (2008b). Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. Journal of Colloid and Interface Science, Vol. 319, pp. 30-39. 23. Hahner, G., Marti, A., Caseri, W. R. & Spencer, N. D. (1996). Orientation and electronic structure of methylene blue on mica: A near edge x-ray absorption fine structure spectroscopy study. American Institute of Physics. J. Chem. Phys., Vol. 104, pp 7749-7757. 24. Halsey, G. (1948). Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics, Vol. 16, No. 10. 25. Hameed, B. H. (2009). Evaluation of papaya seeds as a novel non- conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, Vol. 162, pp. 939-944. 26. Hameed, B. H. (2008). Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, Vol. 154, pp. 204-212. 27. Hameed, B. H., Mahmoud, D. K. & Ahmad, A. L. (2008a). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, Vol. 158, pp. 65-72. 28. Hameed, B. H., Tan, I. A. W. & Ahmad, A. L. (2008b). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, Vol. 154, pp. 337-346. 29. Hameed, B. H. & El-Khaiary, M. I. (2008). Equilibrium, kinetics and mechanism of malachite green adsorptionon activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, Vol. 157, pp. 344-351. 30. Hang, P. T. & Brindly, G. W. (1970). Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays and Clay Minerals, Vol. 18, pp. 203-212. 31. Hasan, S. H., Singh, K. K., Prakash, O., Talat, M. & Ho, Y. S. (2008). Removal of Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’. Journal of Hazardous Materials, Vol. 152, pp. 356-365. 32. Ho, Y. S. & Ofomaja, A. E. (2008). Effect of temperatures and pH on methyl violet biosorptionby Mansonia wood sawdust. Bioresource Technology, Vol. 99, pp. 5411-5417. 33. Ito, R., Dodbiba, G., Fujita, T. & Ahn, J. W. (2008). Removal of insoluble chloride from bottom ash for recycling. Waste Management, Vol. 28, pp. 1317-1323. 34. Kopac, T., Yener, J., Dogu, G. & Dogu, T. (2008). Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon. Chemical Engineering Journal, Vol. 144, pp. 400-406. 35. Liu, Y. (2006). Some consideration on the Langmuir isotherm equation. Colloids and Surfaces A: Physicochem. Eng. Aspects 274, pp. 34-36. 36. Martinez, S. S. & Gonzalez, A. S. (2008). Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonics Sonochemistry, Vol. 15, pp. 1038-1042. 37. McKay, G. & Ho, Y. S. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, Vol. 70, pp. 115-124. 38. Mittal, A., Gajbe, V. & Mittal, J. (2008). Removal and recovery of hazardous triphenylmethane dye, methyl violet through adsorption over granulated waste materials. Journal of Hazardous Materials, Vol. 150, pp. 364-375. 39. Moreno, L., Yan, J. & Neretnieks, I. (1999). The neutralization behavior of MSWI bottom ash on di€erent time scales and in di€erent reaction systems. Waste Management, Vol. 19, pp. 339-347. 40. Oladoja, N. A., Asia, I. O., Aboluwoye, C. O., Oladimeji, Y. B. & Ashogbon, A. O. (2008). Studies on the sorption of basic dye by rubber(hevea brasiliensis) seed shell. Turkish J. Eng. Env. Sci., Vol. 32, pp. 143-152. 41. Purkait, M. K., Nandi, B. K. & Goswami, A. (2009a). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science. Applied Clay Sci., Vol. 42, pp. 583-590. 42. Purkait, M. K., Nandi, B. K. & Goswami, A. (2009b). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials. Vol. 161, pp. 387-395. 43. Rauf, M. A., Bukallah, S. B. & AlAli, S. S. (2007). Removal of methylene blue from aqueous solution by adsorption on sand. Dyes and Pigments, Vol. 74, pp. 85-87. 44. Sakai, S., Sawell, S. E., Chandler, A. J., Eighmy, T.T., Kosson, D. S., Vehlow, J. J., van der Sloot, H. A., Hartldn, J.& Hjelmar, O. (1996). World trends in municipal solid waste management. Waste Management, Vol. 16, Nos 5/6, pp. 341-350. 45. Sener, S. (2008). Use of solid wastes of the soda ash plant as an adsorbent for theremoval of anionic dyes: Equilibrium and kinetic studies. Chemical Engineering Journal, Vol. 138, pp. 207-214. 46. Sivanesan, S., Thinakaran, N., Panneerselvam, P., Baskaralingam, P. & Elango, D. (2008). Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells. Journal of Hazardous Materials, Vol. 158, pp. 142-150. 47. Sun, W. L., Qu, Y. .Z., Yu, Q. & Ni, J. R. (2007). Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash. Journal of Hazardous Materials. Vol. 154, pp. 595-601. 48. Thiravetyan, P., Nakbanpote, W. & Leechart, P. (2009). Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. Journal of Environmental Management, Vol. 90, pp. 912–920. 49. Thiravetyanb, P., Netpradita, S. & Towprayoon, S. (2003). Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, Vol. 37, pp. 763-772. 50. Wey, M. Y. & Fang, T. J. (1995). The Effect of Organic and Inorganic Chlorides on the Formation of HCl with Various Hydrogen Containing Sources in Fluidized Bed Incinerator. Environment International, Vol. 21, pp. 423-431. 51. Wiles, C. C.(1996). Municipal solid waste combustion ash: State- of-the- knowledge. Journal of Hazardous Materials, Vol. 47, pp. 325-344. 52. Wu, S. H., Kuo, C. Y. & Wu, J. Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science. Vol. 327, pp. 308-315. 53. Zubairu, S. M. J., Harrison, G. F. S., Uzairu, A. & Iyun, J. F. (2009). Methylene blue (MB) adsorption from glycerol solution onto the twin habit of α-goethite. African Journal of Pure and Applied Chemistry, Vol. 3 (2), pp. 42-50.
摘要: 底渣之性質與砂石成分相近,常應用於土木工程之填充材,用以降低工程所須之成本,但因其內含有害物質,故於再利用前須經前處理後方能使用。本研究利用前處理過之MSWI底渣,將其運用於去除染料(Methylene Blue, MB)水中之色度。 本研究將底渣篩分成0.149~2 mm(#100)、2~4.75 mm(#10)及小於4.75 mm混和底渣(#mix)三種不同之粒徑,並以硝酸(酸化)、氫氧化鈉(鹼化)及純水(熟化)再處理,探討在不同溫度下(15、25及35℃)對MB溶液之吸附行為,及相同反應時間內底渣之吸附效果,最終以七種等溫吸附模式與動力吸附模式進行分析,並比較經酸化、鹼化和熟化底渣其吸附行為之差異。 研究結果顯示,在等溫吸附實驗中,不同粒徑之樣本底渣吸附效果均以酸化底渣之效果最佳。經8小時吸附後,其平衡濃度(Ce)大小為#100 > #mix > #10,當初始濃度低於5.5 mg/L時,色度去除率可達100%;在初始濃度為20 mg/L時,去除率最高可達97%。等溫吸附模式模擬結果顯示,以Langmuir吸附模式來描述酸化底渣之吸附行為有較佳之相關性;動力吸附模式模擬結果指出,運用底渣吸附染料水中色度為二階之吸附行為,且酸化過之底渣吸附速率最快。酸化底渣不論粒徑大小,其吸附量皆高於鹼化及熟化之底渣,且在吸附時間1620 min過程中,酸化底渣吸附量在粒徑#100、#10及#mix中,分別高出鹼化及熟化底渣約0.3、0.5及0.2~0.3 mg/g,其中以大粒徑之酸化底渣吸附量最高。
In this work, MSWI bottom ash (BA) was evaluated for its ability to removal of Methylene Blue (MB) . The H-BA, N-BA and W-BA were made by treating BA with 0.5 M HNO3 , 0.5 M NaOH and pure water, respectively. Sorption isotherm of MB onto the H-BA, N-BA, W-BA and BA was determined at different temperature(15℃, 25℃ and 35℃) with the initial concentrations of MB in the range of 0-20 mg/L. The equilibrium data were analyzed using the Freundlich, Langmuir, Temkin, B.E.T., Dubinin-Radushkevich (D-R), Halsey and Harkin–Jura isotherm models. The removal rates of MB are 100% and 97% by H-BA, when the initial concentrations of MB are 5.5 and 20 mg/L, respectively. The equilibrium data can be described well by the Langmuir isotherm models. Sorption kinetic of MB onto the H-BA, N-BA, W-BA and BA was investigated under time period of 1620 mins. The H-BA has a faster removal rate than other BA.The kinetic data were analyzed in terms of the Webber's intraparticle diffusion, Lagergeren, Ho and McKay, Elovich , zero-order, 1-order and 2-order kinetic models. The Ho and McKay kinetic model best describs the sorption process for H-BA. Keywords: MSWI bottom ash, Acid, Methylene Blue (MB), Dye removal, Kinetic process, Adsorption isotherm
URI: http://hdl.handle.net/11455/5636
其他識別: U0005-0907200918090100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0907200918090100
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。