Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5665
標題: 利用電沉積法處理經酸洗後MSWI飛灰回收液之重金屬效能研究
To Recover Heavy Metals from MSWI Fly Ash Liquid after Acid Washing by Electro-deposition Process
作者: 林奇瑩
Lin, Chi-Ying
關鍵字: MSWI
MSWI
TCLP
Acid-washing
Electrodeposition
Removing rate
Recovery rate
TCLP
酸洗
電沉積技術
去除率
回收率
出版社: 環境工程學系所
引用: 一、 中文文獻 1. 王薪嘉,「MSWI飛灰中重金屬經電沉積法回收後資源化之研究」,碩士論文,國立中興大學環境工程研究所,台中,2008。 2. 王鯤生、張木彬,「高溫熔融處理事業廢棄物焚化灰燼之減量、經濟性及資源再利用之研究」,期末報告,榮民工程事業管理處,1997。 3. 白育綸、胡啟章, 「電沈積鐵族合金之組成控制、表面奈米化及應用」,博士論文,國立中正大學化學工程研究所,嘉義,2003。 4. 古彥菁、余榮山、鈴木義男,「焚化飛灰重金屬捕集無害化技術之探討」,第15屆廢棄物處理技術研討會論文集,2000。 5. 田福助,「電化學:基本原理與應用」,五洲,1988。 6. 李釗、于諄德、陳迪華、曾迪華,「垃圾焚化飛灰固化前之前處理分法研究」,第十二屆廢棄物處理技術研討會論文集,台北,第231頁,1997。 7. 李建中、李釗、何啟華、鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,第193頁,1996。 8. 吳家誠,「重金屬之化學物種分類與分析技術」,化學,第49期,第316-322頁,1991。 9. 林世強,「以垃圾焚化灰為原料之環保水泥生產技術與物性探討」,第17屆廢棄物處理技術研討會論文集,2002。 10. 林家禾,「垃圾焚化飛灰中無機氯鹽對重金屬溶出之影響」,碩士論文,私立淡江大學水資源及環境工程研究所,淡水,1995。 11. 周政賢,「利用電動力法處理MSWI飛灰重金屬之研究」,碩士論文,國立中興大學環境工程研究所,台中,2007。 12. 孫世勤,「垃圾焚化廠灰渣處理與再利用方式評估」,網路資料,中興工程顧問,2004。 13. 高思懷,「焚化廠灰渣處理及資源化技術」,行政院環境保護署環境保護人員訓練所垃圾焚化廠操作營運管理訓練班,第1-31頁。 14. 張君偉, 「水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響」,碩士論文,國立中央大學環境工程研究所,桃園,2000。 15. 張坤森、郭曉恬、陳筱逸、魏意銘、陳欣宜、陳麗萍,「水及酸萃取程序去除MSWI飛灰Pb之無害化研究」,中華民國環境工程學會-廢棄物處理技術研討會,2008。 16. 黃國全, 「靜電集塵器對空氣污染之防治」,台灣環保產業雙月刊,第15期,2002。 17. 楊仁泊,「國內垃圾焚化飛灰水萃之基本特性」,中華民國環境工程學會廢棄物處理技術研討會,2006。 18. 楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,第43-49頁,1996。 19. 廖文彬、楊仁泊、周政賢,「垃圾焚化飛灰重金屬總量分析之探討」,環境分析化學研討會, 中興大學,2006。 20. 廖明村、李宜欣、孫世勤,「垃圾焚化飛灰處理與再利用之探討」,化工技術,第14卷,第2期,PP.167-181,2006。 21. 蔡啟明,「垃圾焚化飛灰之萃取特性研究及電解回收重金屬之探討」,碩士論文,中山大學環境工程研究所,高雄,1995。 22. 謝淵清,「電化學反應程序」,徐氏基金會,1983。 23. 謝慶弘,「以水洗酸溶處理垃圾焚化飛灰可行性之研究」,碩士論文,國立中興大學環境工程研究所,台中,2003。 24. 鐘元章,「垃圾焚化飛灰以磷酸無害化處理之研究」,碩士論文,淡江大學水資源及環境工程學系,台北,2002。 25. 顧順榮、鐘昀泰、張木彬,「台灣地區都市垃圾林化灰份中重金屬濃度及TCLP溶出評估」,第十屆廢棄物處理技術研討會論文集,第271-279頁,1995。 26. 經濟部工業局,「廢棄物資源化技術」,民國88年6月。 27. 行政院環境保護署;事業廢棄物管制資訊網,2009。 28. 行政院環境保護署;環境檢驗所資訊網,2009。 29. 行政院環境保護署;環境督察總隊台北辦公室,2009。 30. 行政院環境保護署;統計室年報表,2009。 31. 行政院環境保護署;廢管處,2009。 二、 英文文獻 32. Brenner, A., “ Electrodepostion of alloys principles and practice”, Vol. 1, Academic Press, New York, 1963. 33. Buchholz, B.A. and Landsberger, S. “ Leaching dynamics studies of municipal solid waste incinerator ash” Air & Waste Management Association 45579, 1995. 34. Carlton, C. Wiles., “Municipal solid waste combustion ash:State-of- the-Knowledge”, Journal of Hazardous Materials, Vol. 47, PP. 325-344, 1996. 35. Chen, G., “Electrochemical technologies in wastewater treatment”, Separation and Purification Technology, Vol. 38, pp. 11-41, 2004. 36. Doulakas, L., Novy, K., Stucki, S. and Comninellis, Ch., “Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution”, Electrochimica Acta, Vol. 46, pp. 349-356, 2000. 37. Eighmy, T. T., Eusden, J. D., Krzanowski, J. E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash”, Environmental Science & Technology Vol. 29, pp. 629, 1995. 38. Elliott, H. A., Liberti, M. R. and Huang, C. P., “Competitive adsorption of heavy metals by soil”, Journal of Environmental Quality, Vol. 15, pp. 214-219, 1986. 39. Elsherief, A. E., “Removal of cadmium from simulated wastewaters by electrodeposition on spiral wound steel electrode”, Electrochimica Acta, Vol. 48, pp. 2667-2673, 2003. 40. Fenfen Z., Masaki T., Kazuyuki O., Nobuo T., “Comparison of two types of municipal solid waste incinerator fly ashes with different alkaline reagents in washing experiments’’, Waste Management, Vol.29, pp. 259–264, 2009 41. Ferreira, C., Ribeiro, A. and Ottosen, L., “Possible applications for municipal solid waste fly ash”, Journal of Hazardous Materials, Vol. 96, pp. 201-216, 2003. 42. Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A. and S. Francesconi., “Innovative stabilization/solidfication processes of fly ash from an incinerator plant of urban solid waste”, Microchemical Journal, Vol. 79, pp. 29-35, 2005. 43. Gemma, R., “Extraction procedure for the determination of heavy metal in contaminated soil and sediment”, Talanta, Vol. 46, pp. 449-455, 1997. 44. Gerhardt, A., “Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions”, Water Air and soil pollution, Vol. 17, pp. 23-55, 1993. 45. Guillaume, P., Leclerc, N., Lapicque, F. and Boulanger, C., “Electroleaching and electrodeposition of zinc in a single-cell process for the treatment of solid waste”, Journal of Hazardous Materials, 2007. 46. Hamernik, J. D. and Frantz, G. C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Vol. 88, pp. 294, 1991. 47. Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C., Lee, M. Y. and Wang, C. F., “Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash ” , Journal of Hazardous Materials, pp. 1-33, 2007. 48. Huang, W. J. and Chu, S. C., “A study on the cementlike properties of municipal waste incineration ashes”, Cement and Concrete Research, Vol. 33, pp. 1795–1799, 2003. 49. IAWG (The International Ash Working Group), “Municipal solid wasteincinerator residues”, Elsevie, 1997. 50. Issabayeva, G., Aroua, M. K. and Sulaiman, N. M., “Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell”, Desalination, Vol. 194, pp. 192-201, 2006. 51. Kida, A., Noma, Y. and Imada, T., “Chemical speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol. 16, pp. 527-536, 1996. 52. Kim, S. O., Moon, S. H., Kim, K. W. and Yun, S. T., “Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges”, Water Research, Vol. 36, pp. 4765-4774, 2002. 53. Lietz, W. and Galling, G., “Metals from sediments”, Water Research, Vol. 23, pp. 247-252, 1989. 54. Lin, D. F., Lin, J. D. and Chen, S. H.,“The application of baghouse fines in Taiwan Resources”, Conservation and Recycling, Vol. 46, pp. 281-301, 2006. 55. Mangialardi, T., Paolini, A. E., Polettini, A. and Sirini, P., “ Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol. 70, pp. 53-70, 1999. 56. Martina, V., Vojtˇech, E., Ondˇrej, ˇS., Martin, M., Tomaˇs, G., Jan, R., “The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash’’, Journal of Hazardous Materials, Vol.xx, pp. xxx–xxx(HAZMAT-9358), 2009 57. Mulder, E., “Pre-treatment of MSWI fly ash for useful application”, Waste Management, Vol. 16, pp. 181, 1996. 58. Okada, T., Tojo, Y. *, Tanaka, N., and Matsuto, T., ‘’Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW – Comparison and applicability of chemical leaching methods’’, Waste Management, Vol. 27, pp. 69–80, 2007. 59. Oztekin, Y. and Yazicigil, Z., “Recovery of metals from complexed solutions by electrodeposition”, Desalination, Vol. 190, pp. 79-88, 2006. 60. Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers, 1991. 61. Pillai, K. C., Chung S. J., Moon, I. S., “Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process”, Chemosphere, Vol. 73, pp. 1505–1511, 2008. 62. Querol, X., Fernandez-Turiel. J, L. and Lopez-Soler, A., “Trace element in coal and their behavior during combustion in a large power station”, Fuel, Vol. 74 pp. 331-343, 1995. 63. Solubility product constants, http://www.ktf-split.hr/periodni/en/abc/kpt.html. 64. Takayuki, S. and Masataka, H., “Behavior of stabilized fly ashes in solid waste landfills”, Waste Management, Vol. 16, pp. 545-554, 1996. 65. Tchobanoglous, G., Theisen, M. and Vigil, S., “Integrated solid waste manage.-engineering principles and management issues”, McGraw-Hill, 1993. 66. Tessier, A., Campbell, P. G. C. and Bisson, M., “Sequential extraction procedure for the speciation of particulate trace metals”, Analytical Chemistry, Vol. 51, pp. 544-851, 1979. 67. Traina, G. a., Morselli, L. and Adorno, G. P., “Electrokinetic remediation of bottom ash from municipal solid waste incinerator ”, Electrochimica Acta, Vol. 52, pp. 3380-3385, 2007. 68. Vernon, L. S., David, J., “Water Chemistry”, 新智出版社,1982. 69. Wadge, A., Hutton, M. and Peterson, P. J., “The concentrations and particle size relationships of selected trace elements in fly ashes from U.K. coal-fired power plants and refuse incinerator”, Science Total. Environment, Vol. 54, pp. 13-57, 1986. 70. Wang, S. Y. and Vipulanandan, C., “Leachability of lead from solidified cement-fly ash binders”, Cement and Concrete Research, Vol. 26, pp. 895-905, 1996. 71. Wunsch, P., Greilinger, C., Bienick, D., and Kettrup, A. “Investingation of the binding of heavy metals in thermally treated residues from waste incineration” Chemosphere Vol.32 No.11 2211, 1996. 72. Yang, C. C., “Recovery of heavy metals from spent Ni–Cd batteries by a potentiostatic electrodeposition technique”, Journal of Power Sources, Vol. 115 , pp. 352-359, 2003. 73. Yvon, J., Antenucci, D., Jdid, E. A., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P. and Veschkens, M., “Long-term stability in landfills of municipal solid waste incineration fly ashes solidified/stabilized by hydraulic binders“, Journal of Geochemical Exploration, Vol. 90, pp. 143–155, 2006. 74. Zhou, D. M., Deng, C. F. and Cang, L., “Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents”, Chemosphere, Vol. 56, pp. 265-273, 2004.
摘要: 近年來由於工商業發展迅速,每年約產生600萬噸的廢棄物,傳統掩埋方式已無法有效處理日益增加之廢棄物,故政府於97年2月完成24座大型焚化爐之興建,期能有效解決廢棄物所衍生的相關問題。據環保署97年統計資料顯示,目前國內近90%清運垃圾雖以都市固體廢棄物焚化爐(Municipal Solid Waste Incinerators, MSWI)處理,卻會伴隨底渣及飛灰產生,產生量為0.044 (ton Fly ash/ ton Solid waste)。由國內24座大型焚化爐之MSWI飛灰TCLP檢測結果顯示,焚化飛灰中重金屬鉛(Pb)含量平均濃度約為50 mg/L,為法規標準值5.0 mg/L十倍以上,且TCLP不合格率高達52.9%。若飛灰未經適當之穩定/安定化處理,將可能造成重金屬環境汙染。 飛灰具有高pH之特性,故重金屬多以氫氧化物形式沉積於飛灰上;因此本研究以酸洗程序,將飛灰中重金屬鉛(Pb)及銅(Cu)溶出,再利用電沉積技術進行酸洗液後續處理。目的在於探討,酸洗程序對飛灰重金屬溶出能力及電沉積技術於酸洗液中回收重金屬之效能。 研究結果顯示,以液固比20/1之0.5N HNO3酸洗飛灰,酸洗後重量削減68.6%;鉛及銅溶出率分別為55.6%及83.2%;重金屬鉛的鍵結型態殘渣態比例由34%上升至66%。由電沉積實驗結果得知,供應電流5A、10A、15A之鉛去除率分別為54%、74%、84%;銅分別90%、80%、82%。以回收率而言,固定電流10A可回收25.7%鉛及59.8%銅之效果最好。結果顯示,以酸洗結合電沉積用來回收MSWI飛灰中重金屬是可行的。
In recent years, because the industry and commerce is fast growing, there''re almost 6 million tons of domestic wastes produced every year. It''s unable to dispose of the domestic wastes effectively by traditional landfill, so the government finished the construction of 24 large-scale incinerators in February 2008. According to EPA statistic in Taiwan, it''s nearly 90% of domestic wastes was treated by Municipal Solid Waste Incinerators (MSWI), but it will produce bottom-ash and fly-ash. The producing amount is 0.044 ton Fly ash/ ton Solid waste. And the MSWI fly ash TCLP (Toxicity Characteristic Leaching Procedure) test results showed that the average concentration of heavy metal lead was about 50 mg/L, which is ten times over the regulation limit 5.0 mg/L, and TCLP disqualification rate is up to 52.9%. If fly ash don't take treatment through appropriate stability / solidification, it may cause the environmental pollution of heavy metal. The fly ash usually has characteristic of high pH, so that much heavy metal is deposited on the fly ash in the form of hydroxide. This research will dissolve Pb and Cu from fly ash by acid washing, and then utilize electrodeposition technology to deal the acid-washing liquid. The purpose is wanted to discuss the ability of dissolving heavy metal by acid-washing procedure, and the efficiency of electrodeposition technology to recover the heavy metal from acid-washing liquid. The results of study reveal that acid-washing the fly ash by L/S=20/1 with 0.5N HNO3 could cut down the weight by 68.6% after acid-washing. The dissolution rates of Pb and Cu are 55.6% and 83.2% respectively, and then the residue rates of Pb rises from 34% to 66%. By means of electrodeposition experiment, the removing rates of Pb at electric current 5A, 10A, 15A are 54%, 74%, 84% respectively; Cu is differentiated 90%, 80%, 82%. As for rate of recovery, it''s the best to fix electric current at 10A which can recover 25.7% of the Pb and 59.8% of Cu. The results reveal that it can be looked forward to recover heavy metal from MSWI fly ash by the combined procedure with acid-washing and electrodeposition.
URI: http://hdl.handle.net/11455/5665
其他識別: U0005-1307200919284800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307200919284800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.