請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5685
標題: 以氫氧化鈉及醋酸在電動力法中去除土壤中氯酚污染物
Removal of Two Chlorophenols from Contaminated Soil by Electrokinetic Approach with Sodium Hydroxide and Acetic Acid
作者: 蔡鎮謙
Tsai, Jen-Chain
關鍵字: Pentachlorophenol(PCP)
五氯酚(Pentachlorophenol, PCP)
2,4-Dichlorophenol (2,4-DCP)
Electrokinetictreatment
Electrolyte solution
2,4-二氯酚(2,4-Dichlorophenol, 2,4-DCP)
電動力復育
電解液
出版社: 環境工程學系所
引用: 一、中文部分 1. 行政院環境保護署。全國已公告為土壤及地下水污染控制場址。上網瀏覽日期2008,檢自 http://sgw.epa.gov.tw/public/0401_Result.asp?status=1 2. 行政院環境保護署。中石化(台鹼)安順廠整治場址。上網瀏覽日期2009a,檢自 http://cpdc.recyclesources.com/download.asp 3. 行政院環境保護署。宣導手冊-認識生活環境中毒性物質。上網瀏覽日期2009d,檢自 http://www.epa.gov.tw/ch/aioshow.aspx?busin=324&path=1900&guid=0f113f7e-801a-4195-9845-8af0aab8e48e〈=zh-tw 4. 行政院環境保護署。放流水標準附表。2001a,檢自 http://w3.epa.gov.tw/epalaw/index.aspx 5. 行政院環境保護署。環境基準表。1998,檢自 http://w3.epa.gov.tw/epalaw/index.aspx 6. 行政院環境保護署。土壤污染管制標準。2001b,檢自 http://w3.epa.gov.tw/epalaw/index.aspx 7. 行政院環境保護署。毒理資料庫查詢。上網瀏覽日期2009b,檢自 http://edb.epa.gov.tw/index_toxic.htm 8. 行政院環境保護署。有害事業廢棄物認定標準。上網瀏覽日期2009c,檢自 http://edb.epa.gov.tw/index_toxic.htm 9. 行政院環境保護署。國內場址列管情形。上網瀏覽日期2009d,檢自 http://sgw.epa.gov.tw/public/0401.asp 10. 張尊國 (2002)。台灣地區土壤污染現況與整治政策分析。財團法人國家政策研究基金會。 11. 黃秋嫆 (1993)。固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究。國立中興大學環境工程系碩士論文。 12. 阮國棟 (1984)。廢水中各種酚類去除之理論及實務。工業污染防治,第三卷,第三期,第88-103頁。 13. 楊茱芳 (2003)。五氯酚分解菌之分離與及其生理特性研究。國立中興大學環境工程系碩士論文。 14. 李茂山 (1998)。受2,4-二氯酚、三氯乙烯污染土壤之生物復育。國立中興大學環境工程系碩士論文。 15. 翁誌煌 (1998)。受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染廠址之研究(第二年)。行政院國科會專題研究計畫成果報告。 16. 劉永章和葛煥彰 (1998)。電動力現象的基本理論。化工,第四十五卷,第二期,第77-83頁。 17. 林裕雄 (2000)。以電動力法處理受三氯乙烯及單氯酚污染值粘質土壤之研究。國立中興大學環境工程系碩士論文。 18. 袁菁、陳威錦、江姿幸 (2000)。受苯系有機污染物土壤以電動力-界面活性劑系統處理之研究。第十五屆廢棄物處理技術研討會。第2卷,第214~221頁。 19. 斯克誠和駱尚廉 (2000)。土壤與地下水污染整治政策與其實務。土壤水利,第26卷,第四期,第50-58頁。 20. 楊金鐘和林舜隆 (1996)。利用電動力法處理人工合成之鉛污染土壤。第十一屆廢棄物處理技術研討會論文集,第518-527頁。 21. 劉奇岳 (1999)。電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土樣之最佳操作條件探討。國立中山大學環境工程學系碩士論文。 22. 洪肇嘉、吳惠銘、紀吉鴻和陳錕榮 (1998)。電動力復育鉻、鎘、鉛污染土樣之研究。第十三屆廢棄物處理技術研討會論文集。 23. 林世平 (2003)。改良電壓操作方式對電動力處理受污染底泥之影響。國立中興大學環境工程學系碩士論文。 24. 洪敬堯 (2005)。迴流式電動力法處理受銅、鋅污染的農地土壤之研究。國立中興大學環境工程學系碩士論文。 25. 賴冠君 (2005)。不同操作液對於電動力處理受鎘污染土壤效果之探討。國立中興大學環境工程學系碩士論文。 26. 黃瑞淵 (2007)。高嶺土對電動力法處理土壤中五氯酚之影響。中華民國環境工程學會2007土壤與地下水研討會。 27. 薩支高和徐文逢 (1999)。環境變因對鎘污染土壤電動力法移除效率影響。第十四屆廢棄物處理技術研討會論文集,第 279~286。 28. 洪肇嘉、張國賢、吳惠銘 (1997)。電動力法處理硫酸銅污染土壤之質量及電荷平衡探討。第十二屆廢棄物處理技術研討會論文集,第269~276頁。 29. 袁菁、高志明、江姿幸 (2005)。滲透性反應牆對電動力技術復育土壤中五價砷移除機制之研究。中華民國環境工程學會第三屆土壤與地下水處理技術研討會。 30. 陳慶煒 (2007)。電化學對土壤污染銅酸洗效率提升之研究。朝陽科技大學環境工程與管理學系碩士論文。 31. 袁菁、翁誌煌、陳威錦、江姿幸 (2001)。以複合界面活性劑操作流質提升電動力技術處理四氯乙烯污染黏質土壤復育效率之研究。中華民國環境工程學會第十六屆廢棄物處理技術研討會論文集。 32. 翁誌煌、袁菁、涂宏旭 (2001)。串聯式電動力法復育受三氯乙烯污染黏質土壤之研究。第七屆土壤污染防治研討會論文集,第217~232頁。 33. 蔡在唐、簡全基、邱瑞彬、黃嘉貞、鄭云淳、薩之高 (2000)。利用電動力法復育受五氯酚污染之土壤。第十五屆廢棄物處理技術研討會論文集,第2卷,第167~172頁。 34. 洪源駿 (2002)。電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址。國立中山大學環境工程研究所碩士論文。 35. 陳躍升 (2002)。利用砂箱實驗探討電動力-Fenton 法處理受酚污染土壤。國立中山大學環境工程研究所碩士論文。 36. 薩之高、蔡在唐 (2005)。利用觸媒提升電動力法處理受BTEX污染土壤效率之研究。台灣農業化學與食品科學,第43卷,第4期,第304~312頁。 37. 林佩君 (2004)。整合零價金屬與電動力法復育有機污染土壤-以四氯乙烯為例。朝陽科技大學環境工程與管理系碩士論文。 38. 洪琮博 (2008)。E-Fenton法結合透水性反應牆去除地下水中五氯酚之研究。國立中興大學環境工程學系碩士論文。 39. 陳孝仲 (2003)。氯酚污染物在土壤與水系統中分佈機制之探討。朝陽科技大學環境工程與管理系碩士論文。 40. 游正男 (1994)。氯酚化合物在土壤中釋出行為之研究。國立台灣工業技術學院化學工程研究所碩士論文。 41. 行政院環保署環境檢驗所(2005)。土壤中酸鹼值測定方法。NIEA S410.61C。 42. 行政院環保署環境檢驗所(2000)。土壤水分含量測定方法-重量法。NIEA S280.61C。 43. 行政院環保署環境檢驗所(1997)。土壤陽離子交換容量-醋酸鈉法。NIEA 44. 邱瑞斌 (2002)。受五氯酚污染土壤復育技術之研究。屏東科技大學環境工程 與科學系碩士論文。 45. 高福助 (2007)。元素鐵濾床結合過氧化氫去除地下水中五氯酚之研究。中興大學環境工學系碩士論文。 46. 黃瑞淵 (2005)。反應性元素鐵濾床結合過氧化氫進行水及土壤中五氯酚之還原氧化脫氯。嘉南藥理科技大學環境工程與科學系碩士論文。 47. 陳政德 (1999)。電動力-Fenton法結合生物分解現地處理受五氯酚污染之研究。中山大學環境工程研究所碩士論文。 48. 黃瑞淵 (2008)。改良式電動力法處理五氯酚污染土壤之研究。中華民國環境工程學會2008土壤與地下水研討會。 二、西文部分 1. Acar, Y. B. and Alshawabkeh, A. N. (1993). Principals of electrokinetic remediation. Environmental Science and Technology, Vol. 27, pp. 2638-2647. 2. Awad, M. Y. and Abuzaid, N. S. (2000). The influence of residence time on the anodic oxidation of phenol. Separation and Purification Technology, Vol. 18, pp. 227-236. 3. Altin, A. and Degirmenci, M. (2005). Lead(II) removal from natural soils by enhanced electrokinetic remediation. Science of the Total Environmental, Vol. 337, pp. 1-10. 4. Alkan, M., Demirbas, O. and Dagan, M. (2005). Electrokinetic properties of sepiolite suspensions in different electrolyte media. Journal of Colloid and Interface Science, Vol. 281, pp. 240-248. 5. Apostolos, G., Evangelos, G. (2005). Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. Journal of Hazardous Material, Vol. 123, pp. 165-175. 6. Acar, Y. B., Lee, H. and Gale, R. J. (1992). Phenol removal from Kaolinite by electrokinetics. Journal of Geotechnical Engineering, Vol.118, pp. 1837-1852. 7. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bicka, M. and Parker, R. (1995). Electrokinetic remediation:basics and technology status. Journal of Hazardous Materials, Vol. 40, pp.117-137. 8. Bates, E. R., D. W. Grosse, and E. SahleDemessie. (2000). Treatment technology for remediation of wood preserving sites:overview. Remediation . John Wiley & Sons Incorporated. Vol. 10, pp. 35-49. 9. Baraud, F., Tellier, S. and Astruc, M. (1999). Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. Journal of Hazardous Materials, Vol. 64, pp.263-281. 10. Bruell, C. J., Segall, B. A. and Walsh, M. T. (1992). Electroosmotic removal of gasoline hydrocarbons and from clay. Journal of Environmental Engineering, Vol.118, pp. 68-83. 11. Chang, J. H., Qiang, Z., Huang, C. P. and Cha, D. (2000). Electroosmotic flow rate:a semiempirical approach. ACS Symposium Series, Vol. 778, pp.247-266. 12. Cameselle, C., Sanroman, A. M., Pazos, M. (2006). Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochimica Acta, Vol. 52, pp.3349-3354. 13. Hamed, J., Acar, Y. B. and Gale, R. J. (1991). Pb(II) removal from Kaolinite by electrokinetics. Journal of Geotechnical Engineering, Vol. 117, pp. 241-271. 14. Hamed, J. T. and Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 279-294. 15. Haran , B. S., Popov, B. N., Zheng, G. and white, R. E. (1999). Development of a new electrokinetic technique for decontamination of hexavalent chromium from low surface charged soils. Environmental Progress, Vol.15, pp. 166-177. 16. Ho, V. S. (1999). The Lasagna technology for in-situ soil remediation:1. Small field test. Environmental Science and Technology, Vol. 33, pp. 1086-1091. 17. Kim, S. O., Moon, S. O., Kim, K. W. and Yun, S.T. (2002). Pilot scale on the exsite electrokinetic removal of heavy metal from municipal wastewater sludge. Water Research, Vol. 36, pp. 4765-4774. 18. Krishna, R. R., M. ASCE, and Chinthamreddy, S. (2004). Ehanced electrokinetic remediation on heavy metals in glacial till soils using different electrolyte solutions. Journal of Environmental Engineering, Vol.130, pp. 442-455. 19. Karickhoff, S. W., Brown, D. S. and Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, Vol. 13, pp. 241-247. 20. Leinz, R. W., Hoover, D. B. and Meier, A. L. (1998). NEOCHIN: An electrochemical method for environmental application. Journal of Geochemical Exploration, Vol. 64, pp. 421-434. 21. Larry, C. M. and Chen, J. L. (1997). Effects of conductive fractures during in-situ electroosmosis. Journal of Hazardous Materials, Vol. 55, pp. 239-262. 22. McCarthy, D. L., Navarrtet, S., Willett, W. S., Babbitt, P. C., and Copley, S. D. (1996). Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. Biochemistry, Vol. 35, pp. 14634-14642. 23. Mitchell, J. K. (1991). Condition phenomena:from theory to geotechnique. Geotechnique, Vol. 41, pp. 299-340. 24. Mitchell, J. K. (1993). Fundamentals of soil behavior, 2nd edition. John Wiley & Sons. New York. 25. Male, Keith B., Coralie Saby. and Luong, John H. T. (1998). Optimization and characterization of a flow injection electrochemical system for pentachlorophenol assay. Analytical Chemistry, Vol. 70, pp. 4134-4139. 26. Nyer, E. K., Fam, S., Kidd, D. F., Palmcr, P. L., Bocttcheer, G., Crossman, T. L. and Suthersan, S.S. (1996). In-situ treatment. CRC Press Inc., Boca Raton, Florida, pp. 310-314. 27. Nelson, D. W. and Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In Methods of soil analysis: Part 2. Chemical and Microbiological Properties, pp. 539-537. 28. Pignatello, J. J., Martinson, M. M., Steiert, J. G., Carlson, R. E., and Crawford, R. L. (1983). Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Applied and Environmental Microbiology, Vol. 46, pp. 1024-1031. 29. Pamukcu, S. and Wittle, J. K. (1992). Electrokinetic removal of selected heavy metals from soil. Environmental Progress, Vol. 11, pp. 241-250. 30. Probstein, R. F. and Hicks, R. E. (1993). Removal of contaminants from soils by electric fields. Science, Vol. 260, pp. 498-503. 31. Polcaro, A. M., Vacca, A., Mascia, M., Palmas, S. (2007). Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. Journal of Hazardous Materials, Vol.148, pp. 505-512. 32. Puppala, K. S., Alshawabkeh, A. N., Acar, Y. B., Gale, R. J. and Bricka, M.(1997). Enhanced electrokinetic remediation of high sorption capacity soil. Journal of Hazardous Materials, Vol. 55, pp. 221-237. 33. Reddy, K. R., Parupudi, U. S., Devulapalli, S. N. and Xu, Y. C. (1997). Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 135-158. 34. Reddy, K. R., Xu, C. Y. and Chinthamreddy, S. (2001). Assessment of electrokinetic removal of heavy metals from soil by sequential extraction analysis. Journal of Hazardous Materials, Vol. 84, pp. 279-296. 35. Sawada, A., Tanaka, S., Fukushima, M. and Tatsumi, K. (2003). Electrokinetic remediation of clay soils containing copper(Ⅱ)-oxinate using humic acid as a surfactant. Journal of Hazardous Materials, Vol.96, pp. 145-154. 36. Stabnikova, Olena., Wang, J. Y., Zhang, D. S., Tay, J. H. (2005). Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials, Vol. 124, pp. 139-146. 37. Shen, Y. H. (1999). Sorption of natural dissolved organic matter on soil. Chemosphere, Vol. 38, pp. 1505-1515. 38. Tyler, J. M., Finn, R. K. (1974). Growth rates of a pseudomonas on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Applied Microbiology. Vol. 28, pp.181-184. 39. Takiyama, L. and Huang, C.P. (1995). In-situ removal of phenols from contaminated soil by electro-osmosis process. Proceedings of 27th Mid-Atlantic Industrial & Hazardous Waste Conference, pp. 835-846. 40. Vallecillo, A., G. Encina, and M. Peña. (1999). Anaerobic biodegradability and toxicity of chlorophenols. Water Science and Technology, Vol. 40,pp. 161-168. 41. Vidic, R. D., Pohland ,F. G. (1996). Treatment walls, groundwater remediation technology analysis center, Pittsburgh, PA. 42. Vane, M. L. and Zang, G. M. (1997). Effect of aqueous phase properties on clay partical zeta potential and Electro-osmotic permeability:implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials, Vol. 55, pp. 1-22. 43. Virkutyte, J., Sillanpää, M. and Latostenmaa, P. (2002). Electrokinetic soil rediation-critical overview. The Science of the Total Environment, Vol. 289, pp. 97-121. 44. Wu, Zucheng., YE, Qian., Cong, Yanqing. (2005). Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Safety and Environmental Protection, Vol.83, pp. 178-183. 45. Wong, J. S. H., Hicks, R. E. and Probstein, R. F. (1997). EDTA-enhanced electroremediation of metal-contamainated soils. Journal of Hazardous, Vol. 55, pp.61-79. 46. Weng, C. H. and Yuan, C. (2001). Removal of Cr(III) from clay soils by electrokinetics. Environmental Geochemistry and Health, Vol. 23, pp. 281-285. 47. Yeung, A. T. and Mitchell (1993). Coupled fluid, electrical, and chemical flow in soils. Geotechnique, Vol. 43, pp. 121-134. 48. Yang, G. C. C. and Long, Y. W. (1999). Removal and degradation of phenol in a saturated fiow by in-situ electrokinetic remediation and fenton-like process. Journal of Hazardous Materials, Vol. 69, pp. 259-271. 49. Yuan, Ching., Chiang, T. S. (2008). Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials, Vol. 152, pp. 309-315. 50. Yang, G. C. C. and Lin, S. L. (1998). Removal of lead from a silt loam soil by electrokinetic remediation. Journal of Hazardous Material, Vol.58, pp. 285-299.
摘要: 疏水性含氯有機污染物,例如五氯酚(Pentachlorophenol, PCP)及2,4-二氯酚(2,4-Dichlorophenol, 2,4-DCP)為土壤及地下水中重要污染物之一,當這些含氯有機污染物進入土壤中,容易被土壤有機質(Soil Organic Matter, SOM)所吸附而形成一長期污染源,進而對土壤及地下水體造成危害。 本研究使用氫氧化鈉(NaOH)及醋酸(HAc)為電動力實驗之操作液,待處理土樣為含砂量75、85及95%之石英砂/高嶺土混合模擬土樣,含氯污染物污染負荷為20 mg/kg。電動力處理過程中,利用操作液置換系統,有效控制系統電解槽之pH,並提供一穩定電壓梯度(3.33 V/cm)進行土壤中含氯污染物之去除。電動力處理過程中觀察系統電流變化、操作液pH值及電滲透流累積量,並分析污染物濃度及氯離子濃度。 由吸附結果得知,在低pH及高溫環境下,混和土樣對PCP及2,4-DCP之吸附效果較佳,且其吸附機制屬於物理性吸附;以Langmuir吸附模式來分析土樣對兩種氯酚污染物之吸附,結果有相當高之相關性,其相關係數分別為0.947(PCP) 及0.949(2,4-DCP)。電動力實驗結果顯示,以氫氧化鈉(0.05 N)為操作液時,兩種氯酚化合物之去除率皆可達100%;以醋酸(0.1N)為操作液時,PCP及2,4-DCP在75、85及95%含砂量土樣之去除率分別為37、39、23%及56、46、25%。於電動力系統中添加一操作液置換系統,可有效抑制因水解所產生之酸鹼坡降,控制系統中之pH值,進而影響污染物之型態,促進系統對污染物去除之整體效能。綜合本研究之結果,電壓梯度為33.3 V/cm時,電解液NaOH (0.05N)及HAc (0.1N)對PCP及2,4-DCP皆有相當成效之去除效果,其中以氫氧化鈉為最佳之操作液。
Hydrophobic chlorinated organic pollutants are in general characterized by high toxicity and have long half-time like Pentachlorophenol and 2,4-Dichlorophenol. When these chlorophenols into the soil can be easily adsorbted by Soil Organic Matter(SOM) and slowly releaseed into groundwater. In this study, Sodium Hydroxide(NaOH) and Acetic Acid(HAc) were used for removal two chlorophenols from contaminated soil by Electrokinetic treatment.Test were conducted on a kaolin and two mixtures with quartz sand which spiked with PCP or 2,4-DCP in concentration of 20 mg/kg, under the application of a voltage gradient of 3.33 V/cm. The electrolyte solution applied were 0.05N NaOH and 0.1N HAc.The result showed that 100% of the PCP or 2,4-DCP were from the soils, when 0.05N NaOH was used. However when using 0.1N HAc, the removal was 37%、39% and 23% for PCP, the removal was 56%、46% and 25% for 2,4-DCP. Using exchange system can effectively control the pH gradient during electrokinetic process. Accroding experiment result, voltage gradient of 3.33 V/cm and 0.05N NaOH as electrolyte solution can effectively removal two chlorophnols from soils.
URI: http://hdl.handle.net/11455/5685
其他識別: U0005-1607200914524400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200914524400
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。