Please use this identifier to cite or link to this item:
標題: 利用過渡金屬La改質TiO2/ITO光觸媒電極特性及光活性之研究
Study on the characteristics and photoactivity for La-modified TiO2/ITO photocatalytic electrode
作者: 王維甫
Wang, Wei-Fu
關鍵字: Lanthanum
Indium-Tin Oxide
出版社: 環境工程學系所
引用: 申洋文、車雲霞(1998)“鈦分類,第八卷”科學出版社,北京。 林榮良(2002)“TiO2光催化原理和應用例子”Chemistry (The Chinese Chem. SOC., Taipei),60(3),457-461。 胡振國譯(1989)“半導體元件-物理與技術”,全華圖書公司。 洪雲傑(2005)“以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究”,碩士論文,國立中興大學環境工程學系。 陳松興(1978)“異相催化反應”,徐氏基金會。 許招墉(1992)“光電工學概論”,全華圖書公司。 葉志揚(2000)“以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定”碩士論文,國立台灣大學化學工程研究所。 黃文魁、鄭光煒、王偉洪、陳怡甄(2004) “亞太奈米光觸媒之技術發展趨勢與應用市場”,工業技術研究院。 盧明俊、阮國棟、陳重男(1991)“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集。 謝芳生、劉濱達譯(1986)“微電子學”,東華書局。 Aegerter, M.A. (1989). "Sol-gel: science and technology." World Scientific, New Jersey. Bideau, M., Claudel, B., Dubien, C., Faure, L. and Kazouan, H. (1995). "On the immobilization of titanium dioxide in the photocatalytic oxidation of spent waters." Journal of Photochemistry and Photobiology A: Chemistry, 91, 137-144. Bhattacharya, A. K., Pyke, D. R., Reynolds, R.,Walker, G. C. and Werrett, C. R.(1997). "The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide." Journal of Materials Science Letters, 16, 1-3. Brinker, C. J. and Scherer, G. W. (1990). "Sol gel science." Academic Press. Bulent E. and Yoldas (1986). "Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters." Journal of Materials Science, 21, 1087-1092. Chen, H. W., Ku, Y. and Kuo, Y. L. (2007). "Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis." Water Research, In Press, Corrected Proof. Childs, L. P. and Ollis, D. F. (1980). "Is photocatalysis catalytic?" Journal of Catalysis, 66, 383-390. Choi, W., Termin, A.and Hoffmann, M. R. (1994). "The role of metal ion dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Tecombination Dynamics." American Chemical Society, 98, 13669-13679. Dean, J. A.ed. (1973). "Lange''s handbook of chemistry, Ilth ed. " Mcgraw-Hill, New York, 3-123. Doeuff, S., Henry, M., Sanchez, C. and Livage, J. (1987), "Hydrrolysis of titanium alkoxide: Modification of the molecular precursor by acetic acid." Journal of non-crystalline solids, 89, 206-216. Doede, C. M. and Walker, C. A. (1955). "Photochemical engineering." Chemical Engineering, 62(2), 159-178. Daneshvar, N., D. Salari and A. R. Khataee. (2004). "Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2. " Photochemistry and Pohotbiology A:Chemistry, 162, 317-322. Finklea, H. O. (1988). "Semiconductor electrode." Elsevier Press, New York. Fox, M. A. and Dulay, M. T. (1993). "Heterogeneous photocatalysis." Chemical Reviews, 93, 341-350. Gratzel, M. (1983). "Energy: resources through photochemistry and catalysis." Acadamic Press lnc. Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A. and Furic, K. (1996), "Microstructure of nanosized TiO2 obtained by sol-gel synthesis." Materials Letters, 28, 225-229. Gratzel, M., Serpone, N. and Pelizzetti, E., Ed. (1989). "Colloidal semiconductor-in photocatalysis." John Wiley & Sons, New York. He, C., Li, X. Z., Graham, N., and Wang, Y. (2006). "Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application." Applied Catalysis A : General, 305, 54-63. Hague, D. C. and Mayo, M. J. (1994). "Controlling crystallinity during processing of nanocrystalline titania." Journal of the American Ceramic Society, 77, 1957-1960. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann (1995). "Environmental applications of semiconductor photocatalysis." Chemical Reviews, 95, 69-75. Habibi, M. H., and Talebian, N. (2007). "Photocatalytic degradation of an azo dye X6G in water : A comparative study using nanostructured Indium tin oxide and titanium oxide thin films." Dyes and Pigments, 73, 186-194. Habibi, M. H., Talebian, N., and Choi, J. (2006). "Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation." Thin Solid Films, 515, 1461-1469. Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. (2001). "Preparation of stable anatase-type TiO2 and its photocatalytic performance." International Journal of Inorganic Materials, 3, 809–811. Kamat, P. V. (1993). "Photochemistry on nonreactive and reactive (semiconductor) surfaces." Chemical Reviews, 93, 267-269. Parida K.M., Nruparaj Sahu (2008). " Visible light induced photocatalytic activity of rare earth titania nanocomposities. " Journal of Mlecular Catalysis A : Chemical, 287, 151-158. Kumar, K. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H. and Morooka, S. (1992). "Densification of nanostructured titania assisted by aphase-transformation," Nature, 358, 48-51. Legan, R. W. (1982). "Ultraviolet light takes on CPI roles." Chemical Engineering, January, 89, 95-100. Li, J., L. Li, L. Zheng, Y. Xian, and L. Jin (2006). "Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method." Electrochimica Acta, 51, 4942-4949. Lewis, N. S.. Rosenbluth, M. L., Serpone, N. and Pelizzetti, E., Ed. (1989). "Theory of semiconductor materials-in photocatalysis." John Wiley & Sons, New York. Li, X. Z., Zhao, B. X. and Wang, P. (2007). "Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process." Journal of Hazardous Materials, 147, 281-287. Maron, S. H. and Lando, J. B. (1974). "Fundamentals of Physical Chemistry." Macmillan Publishing Co. Inc., New York, 720. Moulder, J. F., Stickle, W. f., Sobol, P. E. and Bomben, K. D. (1992). "Handbook of X-ray Photoelectron Spectroscopy." Perkin-Elmer Corporation Physical Electronics Division. Ma, Y., Guoa, L., Yan, W. and Liu, H. (2001). "Photocatalytic activity of TiO2 film grown on different substrates." Chemosphere, 44, 1087-1092. Muruhanandham, M. and M. Swaminathan. (2006). "Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process. " Dyes and Pigments, 68, 133-142. Ollis, D. F., Pelizzetti, E. and Serpone, N. (1991). "Destruction of water contaminants." Environmental Science & Technology, 25(9), 1523-1529. Okamoto, K., Yasunori, Y., Hirok, T., Masashi, T., and Akira, T. (1985). "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder." Bulletin of the Chemical Society of Japan, 58, 2015-2022. Prengle, H. W. and Mauk, C. E. (1978). "New technology: ozone/UV chemical oxidation waste water process for metal complexes, organic species and disinfection." AIChE Symposium Series, 74(178), 228. Stumm, W. (1992). "Chemstry of the solid-water interface." John Wiley & Sons, New York. Suri, R. P. S., Liu J., Hand, D. W., Crittenden, J. C., Perram, D. L. and Mulins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water.”, Water Environment Research, 65(5), 665-673. Sakata, T., Kawai, T., Gratzel, M. Ed. (1983). "Photosynthesis and photocatalysis with semiconductor powder-in energy resources through photochemistry and catalysis." Academic Press, New York. Srinivasan, S. S., Wade, J., Stefanakos, E. K., and Goswami, Y. (2006). "Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2." Journal of Alloys and Compounds, 424(1-2), 322-326. Tianzhong T., Jinlong Z., Baozhu T., Feng C., . and Dannong He (2008). "Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and methyl orange degradation." Journal of Hazardous Materials, Article In Press Turro, N. J. (1965). "Molecular photochemistry." Columbia University, New York, 1. Turner, J. C. R. (1981). "An introduction to the theory of catalytic reactors." Catalysis Science and Technology, 1, 43-86. Texier, I., Ouazzani, J., Delaire, J. and Giannotti, C. (1999). "Study of the Mechanisms of the photodegradation of atrazine in the presence of two photocatalysts: TiO2 and Na4W10O32." Tetrahedron, 55(11), 3401-3412. Uzunova, M., Kostadinov, M., Georgieva, J., Dushkin, C., Todorovsky, D., Philippidis, N., Poulios, I., and Sotiropoulos, S. (2007). "Photoelectrochemical characterisation and photocatalytic activity of composite La2O3-TiO2 coatings on stainless steel." Applied Catalysis B: Environmental, 73, 23-33. Waldner, G., Gómez, R., and Neumann-Spallart, M. (2006). "Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase : Case of oxalic acid." Electrochimica Acta, 52, 2634-2639. Yang, J., Mei, S. and Rerreira, J. M. F. (2000). "Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition." Journal of the American Ceramic Society, 83(6), 1361-1368. Y. Ku, Y.C. Lee and W.Y. Wang (2006). "Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage. " Journal of Hazardous Materials, B138, 350-356. Y. Guo, X. Zhang, W. Weng, G. Han (2007). "Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition. " Thin Solid Films, 515, 7117-7121. Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste." Environmental Science & Technology, 22(3), 256-257. Zafiriou, O. C., Dubien, J. J., Zepp, R. G. and Zika, R. G. (1984). "Photochemistry of natural waters." Environmental Science & Technology, 18(12), 358-371. Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S. (2007). "Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, In Press, Corrected Proof.
摘要: 本研究嘗試利用過渡金屬鑭(Lanthanum)改質二氧化鈦光觸媒,利用溶膠凝膠法(Sol-gel Method)製備TiO2光觸媒及La- TiO2光觸媒,再經由含浸法(Dip-coating)將製備之光觸媒均勻批覆於載體氧化銦錫導電玻璃(Indium-Tin Oxide)上,製備成電極型式;其中以鑭鈦莫耳比表示添加鑭之比例,分別為0.025、0.05、0.075以及0.1。透過場發射掃描式電子顯微鏡(FE-SEM)、X光粉末繞射儀(XRD)、化學分析電子能譜儀(ESCA)、比表面積(BET)以及表面等電荷點(pHIEP)分析不同鑭鈦莫耳比光觸媒電極間之差異,並選定目標污染物Acid Yellow 17 進行光催化以及光電催化實驗,探討各光觸媒電極之活性。 由FE-SEM、XRD及ESCA等特性分析結果可知,製備之TiO2/ITO光觸媒其結構均勻,顆粒粒徑約為20 nm左右,結晶晶型以銳鈦礦(Anatase)為主。而La-TiO2/ITO光觸媒電極顆粒大小一致,均小於10 nm,晶型轉變為銳鈦礦與金紅石(Rutile)複合型晶型,且隨著鑭的添加量提升金紅石的比例也隨之增加。 於本研究中,吸附或是光解實驗均以鑭鈦莫耳比0.05之光觸媒電極有最佳之去除Acid Yellow 17效果。不同光源之實驗,則是以紫外光為光源有較佳之去除效益。光電催化實驗之結果,外加電壓2.0V可以有效提升可見光光源下之催化能力。 關鍵字:過渡金屬鑭、氧化銦錫導電玻璃、光催化反應、光電催化反應。
The aim of this study has been to develop the TiO2/ITO photocatalytic electrode, modified by Lanthanum, to enable high photocatalytic and photoelectrocatalytic activities under UV light and visible light irradiation. The different molar ratios of La/Ti (0.025, 0.050, 0.075 and 0.100) photocatalytic electrodes use in this study were synthesized by sol-gel method and dip-coating method. Both TiO2/ITO and La-TiO2/ITO photocatalytic electrodes were characterized by Field emission scanning electron microscope(FE-SEM), Electron spectroscopy for chemical analysis system(ESCA), X-ray diffractometer(XRD)and Isoelectric point(pHIEP). The photocatalytic and photoelectrocatalytic activities were evaluated by the degradation of Acid Yellow 17. The XRD pattern of TiO2/ITO presents only anatase phases, but for La-TiO2/ITO presents both anatase and rutile phases. The contents of the rutile phase increased with the increase of the molar ratio of V/Ti. The SEM image of the La-TiO2/ITO showed particles of regular shapes with smaller size (<10nm) compared to the TiO2/ITO, which presented uniform particles of spherical structure and larger size (20nm). The La-TiO2/ITO photocatalytic electrode with molar ratio 0.050 shows the best ability both on the absorbtion and photocatalytsis. The photocatalytic electrodes modified by La shows the stronger photocatalytci ability under UV light then under visible light irradiation. Applied potential 2.0V would effectively increase the photoelectrocatlaytic activity under visible light irradiation. Keywords : Lanthanum、Indium-Tin Oxide、Photocatalytic、Photoelectrocatalytic
其他識別: U0005-1805200912573900
Appears in Collections:環境工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.