Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5694
標題: 以過渡金屬鑭改質TiO2降解偶氮染料之研究
The study on decomposition of azo dye by La-modified TiO2
作者: 王倩卉
Wang, Chien-Hui
關鍵字: TiO2
二氧化鈦
Lanthanum
photocatalytic
azo-dye Acid Yellow 17
過渡金屬鑭
光催化反應
偶氮染料
出版社: 環境工程學系所
引用: 中文部份 書籍類 毛玉麟、吳政恩、經濟部工業局/台灣產業服務基金會,“染料工業”,經濟部工業局,1995。 林俊輝,德國禁用特定偶氮染料之相關產品對我國產業之影響及因應之道,工業簡訊第二十五卷第十二期,第119-126頁,1995。 邱永亮、魏盛德合譯,染色化學,徐氏基金會出版,1975。 邱永亮譯,染料之合成與特性,徐氏基金會出版,1975。 胡振國譯,半導體元件-物理與技術,全華圖書公司,1989。 高濂、鄭珊、張青紅著,奈米光觸媒,五南圖書公司,2004。 張漢昌,廢水污染與防治,新文京開發出版社出版,第九章,第391-396頁,2005。 經濟部環保署工業減廢聯合輔導小組,工業減廢技術手冊1-染整工業,1993。 經濟部環保署工業減廢聯合輔導小組,工業減廢技術手冊4-染整工業,1995。 謝芳生、劉濱達譯,微電子學,東華書局,1986。 論文類 朱煥中,活性污泥生物質體吸附鹼性染料之研究,碩士論文,台灣科技大學高分子工程系,2004。 李俊德、張皓,紡織廢水臭氧脫色處理之研究,第一屆廢水處理技術研討會論文集,第5-14頁,1976。 周怡君,在連續之厭氧/好氧二階段生物處理系統內利用固定化菌體顆粒同時去除染整廢水色度及COD之研究,碩士論文,中華大學土木工程學系,2004。 洪淑汝,探討Sphingobacterium sp.菌種對偶氮染料降解之可行性研究,碩士論文,輔仁大學化學系,2006。 洪雲傑,以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究,碩士論文,中興大學環境工程系,2006。 郭淑慧,以奈米碳管對水中偶氮染料之吸脫附行為探討,碩士論文,雲林科技大學環境與安全衛生工程系,2006。 陳凱文,具可見光吸收之金屬改質型TiO2奈米光觸媒,碩士論文,東海大學環境科學與工程學系,2006。 曾俊貴,新型反應器進行以臭氧/過氧化氫程序處理染料水溶液之研究,碩士論文,台灣科技大學化學工程系,1999。 黃東斌,以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究,碩士論文,台灣科技大學化學工程系,2005。 黃慈玲,以飛灰去除染料及染料廢水之研究,碩士論文,中興大學環境工程系,1999。 葉志揚,以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定,碩士論文,國立台灣大學化學工程研究所,2000。 劉昭煜,有機改質蒙脫石處理反應性印染廢水研究,碩士論文,東華大學材料科學與工程學系,2002。 盧明俊,毒性化學物質經二氧化鈦催化之光氧化反應,博士論文,國立交通大學土木工程研究所,1993。 賴保帆,以UV/TiO2程序處理偶氮染料之分解反應研究,碩士論文,中興大學環境工程系,2000。 羅兆鈞,二氧化鈦奈米管應用於處理染料廢水之研究,碩士論文,元智大學化學工程與材料科學系,2006。 網頁類 經濟部環境保護署 環保法規 放流水標準 http://w3.epa.gov.tw/,2007。 經濟部環境保護署 環保標章資訊站 http://greenmark.epa.gov.tw/,2006。 臺北縣綜合發展計畫 http://www.bp.ntu.edu.tw/,2005。 英文部分 Baiju, K. V., C. P. Sibu, K. Rajesh, P. Krishna, P. Mukundan, K.G. K. Warrier, and W. Wunderlich, “An aqueous sol-gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application,” Materials Chemistry and Physics, vol. 90, 123-127 (2005). Bhattacharya, A. K., D. R. Pyke, R. Reynolds, G. C. Walker and C. R. Werrett, “The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide,” Journal of Materials Science Letters, vol. 16, 1-3 (1997). Childs, L. P. and D. F. Ollis, “Is Photocatalysis Catalytic?,” Journal of Catalysis, vol.66, 383-390 (1980). Daneshvar, N., D. Salari, and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2,” Journal of Photochemistry and Pohotbiology A:Chemistry, vol. 162, 317-322 (2004). Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu, “Photocatalytic Decolorization of Wastewater Dyes,” Water Environment Research, vol. 66, 50-53 (1994). Doede, C. M. and C. A. Walker, “Photochemical Engineering,” Chemical Engineering journal, vol. 62, 159-178 (1955). Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, vol. 93, 341-357 (1993). Gratzel, M.. Energy Resources through Photochemistry and Catalysis. Acadamic Press Inc (1983). Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, vol. 95, 69-75 (1995). Jiann, M. W., H. S. Huang, and C. D. Livengood, “Ultraviolet Destruction of Chlorinated Compounds in Aqueous Solution,” Environmental Progess, vol. 11, 195-201 (1992). Ju Xingsong, Pei Huang, Nanping Xu and Jun Shi, “Studies on the preparation of mesoporous titaniamembrane by the reversed micelle method,” Journal of Membrane Science, vol. 202, 63-71 (2002). Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering,vol. 89, 95-100 (1982). Li F. B., Li X. Z., and Hou M. F., “Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control,” Applied Catalysis B: Environmental, vol. 48, 185-194 (2004). Li Z., G. Chen, X. Tian, and Y. Li, “Photocatalytic property of La2Ti2O7 synthesized by the mineralization polymerizable complex method,” Materials Resrarch Bulletin, vol. 43, 1781-1788 (2008). Little, L. W. and J. C. Lamb, “Acute Toxicity of 46 Selected Dyes to the Fathead Minnow, Pimephales Promeals,” Proceedings of the 29th Industrial Waste Conference, Purdue University, 525-533 (1974). Liu Z., Y. Zhou, Z. Li, Y. Wang, and C. Ge, “Enhanced photocatalytic activity of (La, N) co-doped TiO2 by TiCl4 sol-gel autoigniting synthesis,” Journal of University of Science and Technology Beijing, vol. 14, 552-557 (2007). Livage, J., S. Doeuff, M. Henry and C. Sanchez, “Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid,” Journal of Non-Crystalline Solids, vol. 89, 206-216 (1987). Maron, S. H. and J. B. Lando, “Fundamentals of Physical Chemistry,” Macmillan Publishing Co. Inc., New York (1974). Muruhanandham, M. and M. Swaminathan, “Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process,” Dyes and Pigments, vol. 68, 133-142 (2006). Nguyen-Phan T. D., M. B. Song, E. J. Kim and E. W. Shin, “The role of rare earth metals in lanthanide-incorporated mesoporous titania,” Microporous and Mesoporous Materials, vol. 119,290-298 (2009). Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of Chemical Society of Jape,vol. 58, 2015-2022 (1985). Ollis, D. F., E. Pelizzetti and N. Serpone, “Photocatalyzed destruction of Water Contaminants,” Environmental Science and Technol, vol. 25, 1522-1529 (1991). Parida, K.M.and Nruparaj Sahu, “Visible light induced photocatalytic activity of rareearth titania nanocomposites,” Journal of Molecular Catalysis A: Chemical, vol. 287, 151–158 (2008). Prengle, H. W. and C. E. Mauk, “New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection,” AIChE Sym. Ser., vol. 74, 228-244 (1978). Quan X., Q. Zhao, H. Tan, X. Sang, F. Wang, and Y. Dai, “ Comparative study of lanthanide oxide doped titaniu, dioxide photocatalysts prepared by coprecipitation and sol-gel process,” Materials Chemistry and Physics, vol. 114, 90-98 (2009). Rodella, C.B., Nascente, P. A. P., Franco, R. W. A., Magon, C. J., Mastelaro, V. R. and Florentino, A. O., “Surface characterization of V2O5/TiO2 catalystic system,” Physica Status Solidi. A: Applied Research, vol. 187(1), 161-169 (2001). Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis,” Gratzel, M., Ed., Academic Press, New York (1983). Shuil M., N. Sakaguchi, K. Yamada, T. Matsuo, and H. Wakita, “Role in photocatalysis and coordination structure of metal ions adsorbed on titanium dioxide particles: a comparison between lanthanide and iron ions,” Applied Surface Science, vol. 228, 233-244 (2004). Skoog, D. A. and D. M. West, “Fundamentals of Analytical Chemistry,” fourth Ed., CBS College Publiching (1982). Song S., J. Tu, L. Xu, X. Xu, Z. He, Jianping Qiu, Jiangguo Ni, and Jianmeng Chen, “Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid,” Chemosphere, vol. 73, 4101-1406 (2008). Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, vol. 65, 665-673 (1993). Tang, W. Z. and H. An, “UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,” Chemosphere, vol. 31, No. 9, 4150-4170 (1995). Terabe, K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide,” Journal Materials Science, vol. 29, 1617-1622 (1994). Turner, J. C. R., “An Introduction to the Theory of Catalytic Reactors,” Catalysis Science and Technology, vol. 1, 43-86 (1981). Turro, N. J.. (1965). Molecular Photochemistry. Columbia University, N. Y., 1. Uzunova, M., M. Kostadinov, J. Georgieva, C. Dushkin, D. Todorovsky, N. Philippidis, I. Poulios, and S. Sotiropoulos, “Photoelectrochemical characterization and photocatalytic activity of composite La2O3-TiO2 coatings on stainless steel,” Applied Catalysis B: Environmental, vol. 73,23-33 (2007). Uzunova-Bujnova, M., R. Todorovska, D. Dimitrov, and D. Todorovsky, “Lanthanide-doped titanium dioxide layers as photocatalysts,” Applied Surface Science, vol. 254, 7296-7302 (2008). Xu D., L. Feng, and A. Lei, “Characterizations of lanthanum trivalent ions/TiO2 nanopowders catalysisprepared by plasma spray,” Journal of Colloid and Interface Science, vol. 329, 395-403 (2009). Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika, “Photochemistry of Natural Waters,” Environmental Science and Technol, vol.18, 358A-371A (1984). Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science and Technol, vol. 22, 256-257 (1988). Zhang S., Z. Zheng, J. Wang, and J. Chen, “Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature,” Chemosphere, vol. 65, 2282-2288 (2006).
摘要: 本研究以溶膠-凝膠法(sol-gel)製備TiO2及過渡金屬鑭(Lanthanum)改質之光觸媒,改質之觸媒為鑭鈦莫耳比0.05、0.10、0.20及0.30,除利用FE-SEM、XED、ESCA、比表面積(BET)等分析方法鑑定觸媒表面特性外,並利用懸浮式批次反應器光催化處理偶氮染料Acid Yellow 17,做為觸媒之光活性測試。實驗中探討不同La/Ti莫耳比之光觸媒、pH值、污染物初始濃度及光觸媒添加量等操作參數對於Acid Yellow 17分解之影響。 由FE-SEM、XRD及ESCA等特性分析結果可知,本實驗所製備之光觸媒La/TiO2,顆粒大小約為10 nm以內,分布均勻,增加La/Ti莫耳比至0.30時,顆粒開始產生堆積現象。觸媒晶型主要以銳鈦礦為主,添加La金屬越多,金紅石晶型會逐漸增多。利用過渡金屬La改質TiO2之Lan+,主要是以La3+存在於觸媒表面。 在酸性環境時,當觸媒以La金屬改質後,將會大幅提升吸附能力,添加越多量吸附能力越強,因此可促進染料擴散至TiO2表面而分解;利用反應結束後之脫附程序,將吸附於觸媒表面的染料脫附至水溶液中,以釐清實際光催化之降解量。 於本研究中,改質式光觸媒於酸性條件下有最佳光活性;在固定觸媒總量下,以LT10(鑭鈦莫耳比0.1)之觸媒有最佳的光催化效果;而在初始濃度,以單位克重TiO2負荷去除量而言,以15 mg/L有著最佳的處理效果;添加量為0.75 g/L可有效利用觸媒,以達到經濟效應。在可見光系統下,改質之光觸媒(LT10、LT30)對於染料脫色率皆比純TiO2效果來的好。
The La/TiO2 photocatalyst was prepared by lanthanum into TiO2 structure in a sol-gel process. The catalyst was characterized by FE-SEM, XRD, ESCA, and BET analyses. Photocatalytic activities of the supported catalysts were examined through decomposition process of azo-dye Acid Yellow 17 solution under UV irradiation. The effects of some parameters such as proportion of photocatalyst, pH, initial concentration and catalyst dosage, were investigated. Based on the surface analyses of FE-SEM, XRD,ESCA and BET, the results showed that the particle size of TiO2 is about 20 nm, and the particle of La/TiO2 is about 10 nm. The crystal structure is mainly in anatase phase, the contents of the rutile phase increase with the increase of the amount of doped lanthanum. The lanthanum in photocatalyst is in the status of La3+. The adsorption capacity of La/TiO2 catalysts increases with lanthanum dosage in the acidic solution. The contribution of actual photodecomposition was determined by desorption process, after the photocatalytic reaction. In the acidic solution, better photodecomposition efficiency is achieved than in the neutral or alkaline solution. The experiments demonstrated that the optimum doping of La at 10 mol%, the maximum photodecomposition in dye concertration at 15 mg/L and photocatalytic dosage at 0.75 g/L, achieving the highest effect. The La/TiO2 presents better photodecoloritation were higher than the unmodified photocatalyst TiO2 in the visible light system.
URI: http://hdl.handle.net/11455/5694
其他識別: U0005-1805200913282800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1805200913282800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.