Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5700
標題: 應用CMB受體模式解析鹿港及二林地區大氣懸浮微粒的污染源貢獻量
Source Apportionment of Ambient Particulates in Lukang and Erlin Areas by using CMB receptor Model
作者: 李建翰
Li, Chien-Han
關鍵字: 受體模式
CMB
懸浮微粒
source
出版社: 環境工程學系所
引用: Barker, D. R. and L. M. Diana, “Simple Method for Fitting Data When Both Variables Have Uncertainties,” The American Journal of Physics, Vol. 42, pp. 224-226 (1974). Brook, J. R., T. F. Dann and R. T. Burnett, “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Locations,” Journal of the Air & Waste Management Association, Vol. 47, pp. 2-19 (1997). Bourotte, C., A. P. Curi-Amarante, M. C. Forti, L. A. A. Pereira, A. L. Braga and P. A. Lotufo, “Association between Ionic Composition of Fine and Coarse Aerosol Soluble Fraction and Peak Expiratory Flow of Asthmatic Patients in São Paulo City (Brazil),” Atmospheric Environment, Vol. 41, 2036-2048 (2007). Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen and G. M. Bailey, “Characterisation of Chemical Species in PM2.5 and PM10 Aerosols in Brisbane, Australia,” Atmospheric Environment, Vol. 31, pp. 3773-4785 (1997). Chellam, S., P. Kulkarni and M. P. Fraser, “Emissions of Organic Compounds and Trace Metals in Fine Particulate Matter from Motor Vehicles: A Tunnel Study in Houston, Texas,” Air and Waste Management Association, Vol. 55, pp. 60-72 (2005). Chen, K. S., C. F. Lin and Y. M. Chou, “Determination of Source Contributions to Ambient PM2.5 in Kaohsiung, Taiwan, Using a Receptor Model,” Journal of the Air and Waste Management Association, Vol. 51, pp. 489-498 (2001). Chen, S. J., L. T. Hsieh, C. C. Tsai and G. C. Fang, “Characterization of Atmospheric PM10 and Related Chemical Species in Southern Taiwan during the Episode Days,” Chemosphere, Vol. 53, pp. 29-41 (2003). Chen, W. C., C. S. Wang and C. C. Wei, “An Assessment of Source Contributions to Ambient Aerosols in Central Taiwan,” Journal of the Air and Waste Management Association, Vol. 47, pp. 501-509 (1997). Cheng, M. T., C. L. Horng, Y. R. Su, L. K. Lin, Y. C. Lin and C. C. K. Chou, “Particulate Matter Characteristics during Agricultural Waste Burning in Taichung City, Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 187-192 (2009a). Cheng, M. T. and Y. I. Tsai, “Characterization of Visibility and Atmospheric Aerosols in Urban, Suburban and Remote Areas,” The Science of the Total Environment, Vol. 263, pp.101-114 (2000). Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004). Chow, J. C., J. G. Watson, D. H. Lowenthal, L. W. A. Chen, B. Zielinska, L. R. Rinehart, and K. L. Magliano, “Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite,” Atmospheric Chemistry & Physics, Vol. 7, No. 7, pp. 1741-1754 (2007). Colbeck, I. and R. M. Harrison, “Ozone-econdary aerosol- visibility relationships in North-West England,” The Science of the Total Environment., Vol. 34, pp. 87-100 (1984). Councell, T. B., D. Keau, L. Edwardr and C. Edward, “Tire-Wear Particles as a Source of Zinc to the Environment,” Environment Science Technology, Vol. 38, pp. 4206-4214 (2004).- Fang, G. C., Y. S. Wu, J. C. Chen, J. Y. Rau, S. H. Huang and C. K. Lin, “Concentrations of Ambient Air Particulates (TSP, PM2.5 and PM2.5-10) and Ionic Species at Offshore Areas Near Taiwan Strait,” Journal of Hazardous Materials, Vol. 132, pp. 269-276 (2006). Friedlander, S. K., “Chemical Element Balances and Identification of Air Pollution Sources ,” Environmental Science and Technology, Vol. 7, pp. 235-240 (1973). Getler, A.W., D.A. Lowenthal, and W.G. Coulombe, “PM10 Source Apportionment Study in Bullhead City,Arizona,” J. Air Waste Manage. Assoc.,Vol. 45, pp. 75-82 (1995). Gupta, A. K., K. Karar and A. Srivastava, “Chemical Mass Balance Source Apportionment of PM10 and TSP in Residential and Industrial Sites of an Urban Region of Kolkata, India,” Journal of Hazardous Materials, Vol. 142, pp. 279-287 (2007). Horng, C. L. and M. T. Cheng, “Distribution of PM2.5, Acidic and Basic Gases near Highway in Central Taiwan,” Atmospheric Research, In press (2007b). Kim, J. Y., C. H. Song, Y. S. Ghim, J. G. Won, S. C. Yoon, G. R. Carmichael and J. H. Woo, “An Investigation on NH3 Emissions and Particulate NH4+-NO3- Formation in East Asia,” Atmospheric Environment, Vol. 40, pp. 2139-2150 (2006). Kuo, C. Y., P. T. Chen, Y. C. Lin, C. Y. Lin, H. H. Chen and J. F. Shih, “Factors Affecting the Concentrations of PM10 in Central Taiwan,” Chemosphere, Vol. 70, No. 7, pp. 1273-1279 (2008). Lin, J. J., and H.-S. Tai, “Concentration and Distributions of Carbonaceous Species in Ambient Particle in Kaohsiung City, Taiwan,” Atmospheric Environment, Vol. 35, pp. 2627-2636 (2001). Mazzera, D. M., D. H. Lowenthal, J. D. Chow and J. G. Watson, “Source of PM10 and Sulfate Aerosol at McMurdo Station,” Chemosphere, Vol. 45, pp. 347-356 (2001). Miller, M. S., S. K. Friedlander , and G. M. Hidy, “A Chemical Element Balance for the Pasadena Aerosol,” Journal of Colloid Interface Science, Vol. 39 , pp. 165-176 (1972). Moreno, T., A. Alastuey, X. Querol, O. Font and W. Gibbons, “The Identification of Metallic Elements in Airborne Particulate Matter Derived from Fossil Fuels at Puertollano, Spain,” International Journal of Coal Geology, Vol. 71, pp. 122-128 (2007). Mori, I., N. Masataka, T. Toshifumi and Q. Hao, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263 (2003). Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, pp. 815-822 (1990). Ohta, S., M. Hori, S. Yamagata and N. Murao, “Chemical Characterization of Atmospheric Fine Particles in Sapporo with Determination of Water Content,” Atmospheric Environment, Vol. 32, pp. 1021-1025 (1998). Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A. Cooper, T. G. Dzubay and R. L. Bennett, “Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” Journal of the Air and Waste Management Association, Vol. 38 pp.1392-1402 (1988). Olson, D. A., J. Turlington, R. M. Duvall, S. R. McDow, C. D. Stevens and R. Williams, “Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2.5 using low-volume samples,” Atmospheric Environment, Vol. 42, pp. 1742-1751 (2008). Park. S. S., Y. J. Kim and K. Fang,“Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea,” Atmospheric Environment , Vol. 35, pp. 657-665 (2001). Pérez, N., J. Pey, X. Querol, A. Alastuey, J. M. López and M. Viana, “Partitioning of Major and Trace Components in PM10-PM2.5-PM1 at an Urban Site in Southern Europe,” Atmospheric Environment, Vol. 42, No. 8, pp. 1677-1691 (2008). Querol, X., M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, J. Pey, J. de la Rosa, A. Sánchez de la Campa, B. Artíñano, P. Salvador, S. García Dos Santos, R. Fernández-Patier, S. Moreno-Grau, L. Negral, M. C. Minguillón, E. Monfort, J. I. Gil, A. Inza, L. A. Ortega, J. M. Santamaría and J. Zabalza, “Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain,” Atmospheric Environment, Vol. 41, pp. 7219-7231 (2007). Samara, C., “Chemical Mass Balance Source Apportionment of TSP in a Lignite-Burning Area of Western Macedonia, Greece,” Atmospheric Environment , Vol. 39, pp. 6430-6443 (2005). Schauer, J. J., “Evaluation of elemental carbon as a marker for diesel particulate matter,” Journal of Exposure Analysis and Environmental Epidemiology, Vol. 13, pp. 443-453 (2003). Seinfeld, J. H. and S. N. Pandis, “Atmospheric Chemistry and Physics:From Air Pollution to Climate Change,” A Wiley-Interscience Publication, (1998). Sharma, M., A. K. Agarwal and K. V. L. Bharathi, “Characterization of exhaust particulates from diesel engine,” Atmospheric Environment, Vol. 39, pp. 3023-3028 (2005). Srivastava, A. and V. K. Jain, “Seasonal Trends in Coarse and Fine Particle Sources in Delhi by The Chemical Mass Balance Receptor Model,” Journal of Hazardous Materials, Vol. 144, pp. 283-291 (2007a). Tsai, Y. I. and M. T. Cheng, “Visibility and Aerosol Chemical Compositions Near the Coastal Area in Central Taiwan,” The Science of the Total Environment, Vol. 231, pp. 37-51 (1999). Tsai, Y. I. and M. T. Cheng, “Characterization of Chemical Species in Atmospheric Aerosols in a Metropolitan Basin,” Chemosphere, Vol. 54, pp. 1171-1181 (2004). Turpin, B. J., and J. J. Huntzicker, “Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations,” Atmospheric Environment, Vol. 25A, pp. 207-215 (1991). U.S. EPA, Receptor Model Technical Series Volume III: CMB7 User’s Manual. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-90-004. (1989). U.S. EPA, Receptor Model Source Composition Library. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-85-002 (1984). Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, “Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan,” Journal of the Air & Waste Management Association, Vol. 55, pp. 1236-1244 (2005). Wang, C. F., P. C. Chiang, M. T. Cheng and H. L. Chiang, “Improvement of Receptor Model Use in Analytical Aspect,” Atmospheric Environment, Vol. 41, pp. 9146-9158 (2007). Ward, T. J. and G. C. Smith, “The 2000/2001 Missoula Valley PM2.5 Chemical Mass Balance Study, Including the 2000 Wildfire Season—Seasonal Source Apportionment,” Atmospheric Environment , Vol. 39, pp. 709-717 (2005). Watson, J. G., J. C. Chow, Z. Lu, E. M. Fujita, D. H. Lowenthal and D. R. Lawson, “Chemical Mass Balance Source Apportionment of PM10 During The Southern California Air Quality Study,” Aerosol Science Technology., Vol. 21, pp. 1-36 (1994a). Watson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth and R. Robbins, “Differences in The Carbon Composition of Source Profiles for Diesel and Gasoline Powered Vehicles,” Atmospheric Environment. Vol. 28, pp. 2493-2505. (1994b). Watson, J. G., “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon (1979). Watson, J. G., N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer and Q. Nguyen, “The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0,” Environmental Software, Vol. 5, pp. 38-49 (1990). Watson, J. G., N. F. Robinson, C. Lewis, T. Coulter, J. C. Chow, E. M. Fujita, D. H. Lownethal, T. L. Conner, R. C. Henry and R. D. Willis, “Chemical Mass Balance Receptor Model Version 8 User’s Manual,” Desert Research Institute Document No. 1808.1D1 (1997). Watson, J. G., J. C. Chow and T. G. Pace, Chemical Mass Balance. In: Hopke P. K. Eds. Receptor modeling for air quality management. pp. 83-116 (1991). Wang, W. C., K. S. Chen, S. J. Chen, C. C. Tsai, J. H. Lai and S. K. Wang, “Characteristics and Receptor Modeling of Atmospheric PM2.5 at Urban and Rural Sites in Pingtung, Taiwan,” Aerosol and Air Quality Research, Vol. 8 , pp. 112-129 (2008). Yatkin, S. and A. Bayram, “Source Apportionment of PM10 and PM2.5 Using Positive Matrix Factorization and Chemical Mass Balance in Izmir, Turkey,” The Science of the Total Environment, Vol. 390 , pp. 109-123 (2008). Zheng. M., L. G. Salmon, J. J. Schauer, L. Zeng, C. S. Kiang, Y. Zhang and G. R. Cass, “Seasonal trends in PM2.5 source contributions in Beijing, ” Atmospheric Environment, Vol. 39, pp. 3967-3976 (2005). Zhuang, H., C. K. Chan, M. Fang, and A. S. Wexler, “Formation of Nitrate and Non-Sea-Salt Sulfate on Coarse Particles,” Atmospheric Environment, Vol. 33, pp. 4223-4233 (1999). 許美華,「應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源」,碩士論文,國立中興大學環境工程學系,台中(2008)。 高滄志,「濁水溪南岸之季風懸浮微粒來源追蹤及空氣品質影響研究」,碩士論文,大葉大學環境工程學系,彰化(2006)。 邱嘉斌,「台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究」,博士論文,國立中興大學環境工程學系,台中(2005)。 賴沛君,「應用CMB受體模式分析懸浮微粒高污染事件之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2004)。 藍文農,「台灣中部地區大氣有機碳及元素碳微粒之特性研究」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。 王景良,「中部空品區污染源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。 蔡瀛逸,「台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究」,博士論文,國立中興大學環境工程研究所,台中,(1999)。 陳紀綸,「台中港地區大氣懸浮微粒污染來源分析」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。 楊宏隆,「大氣懸浮微粒PM2.5及PM2.5-10之特性及來源分析」,碩士 論文,國立中興大學環境工程研究所,台中,(1998)。 彰化縣環境保護局計畫,「彰化縣空氣污染防治計畫」,彰化縣環境保護局,(2008)。 台中縣環境保護局94年度計畫,「94年度中部空品區氣象與污染成因調查及改善策略研擬計畫」,台中縣環境保護局,(2007)。 郭崇義,「九十三年度彰化地區PM10懸浮微粒調查本分析及管制計畫」,彰化縣環境保護局,(2005)。 鄭曼婷、程萬里、張艮輝、林沛練、莊秉潔、王竹方、郭崇義、林宗嵩、王重傑、黃景祥、白曛綾,「中部地區空氣污染總量管制技術資料建立與應用」,行政院環境保護署研究報告,EPA-89-FA11-03-231 (2000)。 台灣電力公司,「火力發電廠煙道氣粒狀物特性研究」,台灣電力公司八十七年度研究發展專題報告,(1998)。 王秋森,行政院國家科學委員會,專題研究計畫「石化工廠產生的粒狀空氣污染物的受體模式之建立」研究計畫報告,NSC-83-0421-B-002-318Z,(1994)。
摘要: 政府未來將在二林地區增設中部科學園區,且亦有可能在鹿港地區增設電廠,為了探討二林及鹿港地區懸浮微粒之特性及瞭解其污染來源,本研究利用雙粒徑高量採樣器於2008年11/24至12/7及2009年4/27至5/3期間,在鹿港及二林地區採集PM2.5與PM2.5-10大氣懸浮微粒,後續再利用離子層析儀及元素分析儀,分析微粒的水溶性陰陽離子、元素碳和有機碳含量,最後利用化學質量平衡受體模式推估懸浮微粒的污染來源及其貢獻量。 實驗結果顯示在鹿港及二林地區懸浮微粒組成均以細微粒為主。大氣懸浮微粒之化學組成方面,鹿港及二林地區以硫酸鹽、硝酸鹽、銨鹽及含碳物質為主要化學物種。PM2.5高污染事件日時,兩地區PM2.5中質量濃度增加2.4倍,其中硝酸鹽濃度明顯增加4.4倍,硝酸鹽所佔之比例增加,增加的原因可能是受到交通污染源的影響。另外在硫氧化比值(SOR)分析上,冬季時二林地區PM2.5的SOR值較鹿港地區高。 利用化學質量平衡受體模式推算鹿港及二林地區大氣中懸浮微粒之貢獻量,可知鹿港及二林地區PM2.5細微粒主要的污染來源為交通排放、硫酸鹽及硝酸鹽。在PM2.5-10粗微粒部分,兩地區主要污染來源為地殼物質、交通排放及海鹽飛沫,故PM10主要污染來源分別為交通排放、硫酸鹽及硝酸鹽。冬季風速高,易造成風吹揚塵,微粒以地殼物質貢獻量為主,春季則風速低,污染物不易擴散,硫酸鹽及硝酸鹽貢獻量較多。受體模式分析事件日污染貢獻量結果顯示,PM2.5高污染事件日,在兩地區PM2.5細微粒中硝酸鹽之質量濃度比非事件日約增加3倍,二林測站河川揚塵事件日12月5日時,其PM2.5-10粗微粒中地殼物質之質量濃度比非事件日約增加4倍。
Government will build a Central Taiwan Science Park in Erlin area and may also build a Power Plant in Lukang area in the future. In order to investigate the characteristics of aerosol particles and to understand the sources of the aerosol pollutants in these areas, we had used the High Volume Air Samplers were used to collect PM2.5 and PM2.5-10 aerosols at Lukang and Erlin sampling sites. The sampling experiments were conducted during the periods from 11/24-12/7 in 2008 and 4/27-5/3 in 2009. The samples were then further analyzed for water soluble ions, elemental carbon, organic carbon by using ion chromatograph and elemental analyzer. Finally a chemical mass balance receptor model was used to evaluate the source contributions. Experimental results showed the major fraction in the ambient particles was contributed by fine particles in these areas. The particulate mainly consisted of sulfate, nitrate, ammonium and carbonaceous components. During the PM2.5 episodic events, the PM2.5 concentrations in these two places increased about 2.4 times as compared to those in normal days. Among the increased species, nitrate concentrations increased 4.4 times. The significant increase of nitrate contents might be contributed by the vehicle emissions. In the analysis of sulphur oxidation ratio, the sulphur oxidation ratios of PM2.5 obtained in Erlin area in winter were higher than those in Lukang area. The results obtained by using the CMB modeling showed a similar pattern on the source contributions to PM2.5 and PM2.5-10 for these two areas. Vehicle emissions, sulphate and nitrate were the major sources for PM2.5. But for PM2.5-10, the major sources were crustal materials, vehicle emissions and marine spray. Therefore the sources of PM10 mainly attributed from vehicle emissions, sulphate and nitrate. During winter season, the high wind speed easily caused the wind-blown soil dust. Thus, a large portion of source contributions came from crustal materials. On the contrary, the wind speed was relatively lower in spring, and the pollutants were poorly dispersed. Therefore, the major sources were sulphate and nitrate. The results showed that the average concentration of nitrate during the PM2.5 episodic periods was 3 times higher than that obtained during non-episodic days. The data also showed a river dust event occurred on the fifth of December in Erlin area. In this event, the crustal elements contributed the major fraction in PM2.5-10, and were about 4 times higher than those observed during the normal days.
URI: http://hdl.handle.net/11455/5700
其他識別: U0005-1908200922343200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908200922343200
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.