Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5701
標題: 焚化飛灰於熱處理過程中重金屬溶出行為及污染物逸散之研究
A study on evaluation of pollutant emission and heavy metals species properties of MSWI fly ash during thermal treatment process
作者: 周經棟
Chou, Jing-Dong
關鍵字: MSWI fly ash
焚化飛灰
Thermal treatment
Biotoxicity
Sequential extraction procedure
Pollutant emission
熱處理
生物毒性
序列萃取法
污染物逸散
出版社: 環境工程學系所
引用: Aguiar del Toro M., Calmano W., Ecke H. “Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes”, Waste Management, Article in press, 200 Aloisi M., Karamanov A., Pelino M., “Sintered glass-ceramic from municipal solid waste incinerator ashes”, Journal of Non-Crystalline Solids, Vol. 345&346, pp. 192-196, 2004. Aloisi M., Karamanov A., Pelino M., “Sintered glass-ceramic from municipal solid waste incinerator ashes”, Journal of Non-Crystalline Solids, Vol. 345&346, pp. 192-196, 2004. Alvarez-Ayuso E., Querol X., “Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal”, Chemosphere, Vol. 71, pp. 140-146, 2008. Aubert J.E., Hsson B., Sarramone N., “Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash”, Journal of Hazardous Materials Vol. B136, pp. 624-631, 2006. Aubert J.E., Hsson B., Sarramone N., “Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact”. Journal of Hazardous Materials, Vol. 146, pp. 12-19, 2007. Bankowski P., Zou L., Hodges, R., “Reduction of metal leaching in brown coal fly ash using geopolymers”, Journal of Hazardous Materials, Vol. 114, pp. 59-67, 2004. Barbosa R., Lapa N., Boavida D., Lope H., Gulyurtlu I., Mendes B.,”Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes”, Journal of Hazardous Materials, article in press, 2009. Barton R. G., Clark W. D., Seeker W. R., “Fate of metals in waste combustion system”, Combustion Science and Technology, Vol. 74, pp. 327-342, 1990. Bayuseno A.P., Schmahl W.W., Mullejans T., “Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals”, Journal of Hazardous Materials, Vol. 167, pp. 250-259, 2009. Bethanis S., Cheeseman C.R., Sollars C.J., “Properties and microstructure of sintered incinerator bottom ash”, Ceramics International, Vol.28 pp.881-886, 2002 Biernacki J.J., Vazrala A.K., Leimer H.W., “Sintering of a class F fly ash”, Fuel, Vol. 87, pp. 782-792, 2008. Camacho L.M., Munson-McGee S.H., “Anomalous transient leaching behavior of metals solidified/stabilized by pozzolanic fly ash”, Journal of Hazardous Materials, Vol. 137, pp. 144-151, 2006. Camacho L.M., Munson-McGee S.H., “Statistical analysis of process and composition factors affecting the leaching of heavy metals from fly ash solidified/stabilized wastes”. Chemometrics and Intelligent Laboratory Systems, Vol. 77, pp. 224-231, 2005. Chai J.C., Onitsuk K., Hayashi S., “Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives”, Journal of Hazardous Materials, Vol. 166, pp. 67-73, 2009. Chan C.C.Y., Kirk D.W., Marsh H., “The behaviour of Al in MSW incinerator fly ash during thermal treatment”, Journal of Hazardous Materials, Vol. 76, pp. 103-111, 2000. Chandra N., Agnihotri N., Bhasin S., Khan, A.R., “Effect of addition of talc on the sintering characteristics of fly ash based ceramic tiles”, Journal of the European Ceramic Society, Vol. 25, 81-88, 2005. Chandra N., Sharma P., Pashkov G.L., Voskresenskaya, E.N., Amritphale, S.S., Baghel, N.S., “Coal fly ash utilization: Low temperature sintering of wall tiles”, Waste Management, Vol. 28, pp. 1993-2002, 2008. Chang Y. W. and Biswas P., “An Equilibrium Analysis to Determine the Speciation of Metals in An Incinerator”, Combustion and Flame, Vol. 93, pp. 31-40, 1993. Cheeseman C.R., Makinde A., Bethanis S., “Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash”, Resources Conservation and Recycling, Vol.43, pp.147-162, 2005. Cheeseman C.R., Rocha S. M. D., Sollars C., Bethanis S., Boccaccini A.R., “Ceramic processing of incinerator bottom ash”, Waste Management, Vol.23 pp.907-916, 2003. Chen J. C., Wey M. Y., and Yan M. H., “The effect of Chloride Additives on Adsorption of Heavy Metal During Incineration”, J. of AWMA, Vol. 49, pp. 1116-1120, 1999. Chen J. C., Wey M. Y., Chiang B. C., Hsieh S. M., “The simulation of hexavalent chromium formation under various incineration conditions”, Chemosphere Vol. 36, No7, pp. 1553-1564, 1998. Chen J. C., Wey M. Y., Su J. L., Heish, S. M., “Two Stage Simulation of the Major Heavy Metal Species under Various Incineration Conditions”, Environmental International, Vol. 24, No. 4, pp. 451-456, 1998. Cheng T.W., Chen Y.S., “Characterisation of glass ceramics made from incinerator fly ash”, Ceramics International, Vol. 30, pp. 343-349, 2004. Cheng T.W., Ueng T.H., Chen Y.S., Chiu J.P., “Production of glass-ceramic from incinerator fly ash”, Ceramics International, Vol. 28, pp. 779-783, 2002. Chiang B. C., Wey M. Y., Huang S. M., “Heat treatment of incinerator retired sorbents containing heavy metals”, The Science of Total Environment, Vol. 273, pp. 83-92, 2000. Chiang B. C., Wey M. Y., Yang W. Y., Lu C. Y., “Simultaneous control of heavy metals and organics using a fluidized bed adsorber” Environmental technology, Vol. 124, No. 9, pp. 1103-1115, 2003. Chou S.Y., Lo S.L., Hsieh C.H., Chen C.L., “Sintering of MSWI fly ash by microwave energy”, Journal of Hazardous Materials, Vol.163, pp. 357-362, 2009. Cieplik M.K., De Jong V., Bozovic J., Liljelind P., Marklund S., Louw R., “Formation of dioxins from combustion micropollutants over MSWI fly ash”, Environmental Science & Technology, Vol. 40, pp. 1263-1269, 2006. Cinquepalmi M.A., Mangialardi T., Panei L., Paolini A.E., Piga L., “Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics”, Journal of Hazardous Materials, Vol. 151, pp. 585-593, 2008. Coble R. L., “Sintering Crystalline Solids, I. Intermediate and Final Stage Diffusion Models”, J. Appl. Phys., Vol. 32, No. 5, pp.787~792, 1961. Collivignarelli C., Sorlini S., “Reuse of municipal solid wastes incineration fly ashes in concrete mixtures” Waste Management Vol.22, pp.909-912, 2002. Colombo C., Monhemius A.J., Plant J.A., “The estimation of the bioavailabilities of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test”, Science of the total environment, Vol. 389, pp. 46-51, 2008. Daniels J.L., Das G.P., “Leaching behavior of lime-fly ash mixtures”, Environmental Engineering Science, Vol. 23, pp. 42-52, 2006. Dean J.R. and Ma R., “Approaches to assess the oral bioaccessibility of persistent organic pollutants: A critical review”, Chemosphere, Vol. 68, pp. 1399-1407, 2007. Deng F.Q., Qian G.R., “MSWI Fly Ash Based Novel Solidification/Stabilization Matrices for Heavy Metals”, Journal of Wuhan University of Technology-Materials, Science Edition, Vol. 23, pp. 955-960, 2008. Ducman, V. Mladenovic A. Suput J. S. “Lightweight aggregate based on waste glass and its alkali-silica reactivity”, Cement and Concrete Research, Vol.32, pp.223-226, 2002. Dwivedi S., Tripathi R.D., Rai U.N., Srivastava S., Mishra S., Shukla M.K., Gupta A.K., Sinha S., Baghel V.S., Gupta D.K., “Dominance of algae in ganga water polluted through fly-ash leaching: Metal bioaccumulation potential of selected algal species”, Bulletin of Environmental Contamination and Toxicology, Vol. 77, pp. 427-436, 2006. Ecke H., Sakanakura H., Matsuto T., Tanaka N., Lagerkvist A., “State-of-the art treatment processes for municipal solid waste incineration residues in Japan”, Waste management resources, Vol. 18, pp. 41-51, 2000. Fernandez M. A., Martinez L., Segavra M., Garcia J. C., Espiell F., “Behavior of Heavy Metal in the Combustion Gas of Urban Waste Incinerator”, Environment Science and Technology, Vol. 26(5), pp. 1040~1047, 1992. Friedlander S. K., Smoke Dust and Haze : Fundamentals of aerosol behavior, John Wiley and Sons, New York, 1976. Fulladosa E., Murat J.C., Martíneaz M., Villaescusa I., “Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria”, Chemosphere, Vol. 60, pp. 43-48, 2005. Gao X.B., Wang W., Ye T.M., Wang F., Lan Y.X., “Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate”, Journal of Environmental Management, Vol. 88, pp. 293-299, 2008. German R. M., Munir Z. A., “Morphology Relations During Bulk-Transport Sintering”, Met. Trans., Vol. 6A, pp. 2229~2234, 1975. German R. M., Sintering theory and practice, John Wiley and Sons, New York, 1996. Gerstle R. W., Albrinck D. N., “Atmospheric Emissions of Metals from Sewage Sludge Incineration”, Journal of Air Pollution Control Association, Vol. 32, No. 11, pp. 1119~1123, 1982. Geysen D., Vandecasteele C., Jaspers M., Wauters G., “Comparison of immobilisation of air pollution control residues with cement and with silica”, Journal of Hazardous Materials, Vol. B107, pp.131-143, 2004. Geysen D., Vandecasteele C., Jaspers M., Wauters G., “Comparison of immobilisation of air pollution control residues with cement and with silica”, Journal of Hazardous Materials, Vol. B107, pp.131-143, 2004. Ghosh A., Subbarao C., “Leaching of lime from fly ash stabilized with lime and gypsum”, Journal of Materials in Civil Engineering, Vol. 18, pp. 106-115, 2006. Gilardoni S., Fermo P., Cariati F., Gianelle V., Pitea D., Collina E., Lasagni N., “MSWI fly ash particle analysis by scanning electron microscopy-energy dispersive X-ray spectroscopy”, Environmental Science & Technology, Vol. 38, pp. 6669-6675, 2004. Gitari W.M., Petrik L.F., Etchebers O., Key D.L., Iwuoha E., Okujeni C., “Passive neutralisation of acid mine drainage by fly ash and its derivatives: A column leaching study”, Fuel, Vol. 87, pp. 1637-1650, 2008. Gordon S. and McBride B., Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jougute detonations. NASASP-273. Interim Revision, 1976. Goswami R.K., Mahanta C., “Leaching characteristics of residual lateritic soils stabilised with fly ash and lime for geotechnical applications”, Waste Management, Vol. 27, pp. 466-481, 2007. Greenberg R. R., Zoller W.H., Gordon G.E., “Composition and size distributions of particles released in refuse incineration”, Environmental Science and Technology, Vol.12, pp.566-573, 1978. Gupta L.P., Kawahata H., Takeuchi M., Ohta H., Ono Y., “Impact of changes in redox conditions on leaching of some elements from MSW fly ash”, Resource Geology, Vol. 56, pp. 191-196, 2006. Gupta L.P., Kawahata H., Takeuchi M., Ohta H., Ono Y., “Temperature and pH dependence of some metals leaching from fly ash of Municipal solid waste”, Resource Geology, Vol. 55, pp. 357-372, 2005. Haque M. N., Al-Khaiat H., Kayali O., “Strength and durability of lightweight concrete”, Cement and Concrete Composites, Vol.26, pp.307-314, 2004 Hester R.E., Harrison R. M., Waste incineration and the environment, Royal Society of Chemistry, Cambridge, 1994 Hettiarachchi G.M., Pierzynski G.M., Ransom M.D., “In situ stabilization of soil leas using phosphorus and manganese oxide”, Environmental science & technology, Vol. 34, pp. 4614-4619, 2000. Hiraoka M., Takeda N., “Behavior of Hazardous Substances in Stabilization and Solidification Processes of Industrial Wastes. R.B. Pojasek(ed)”, Toxic and Hazardous Waste Disposal, Vol. 3, pp. 107~124, 1996. Hong K.J., Tokunaga S., Kajiuchi T. “Extraction of heavy metals from MSW incinerator fly ashes by chelating agents”, Journal of Hazardous Materials,B75, pp. 57-73, 2000. Hu S.H., “Stabilization of heavy metals in municipal solid waste incineration ash using mixed ferrous/ferric sulfate solution”, Journal of Hazardous Materials, Vol. B123, pp. 158-164, 2005. Huang S.J., Chang C.Y., Mui D.T., Chang F.C., Lee M.Y., Wang, C.F., “Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash”, Journal of Hazardous Materials, Vol. 149, pp. 180-188, 2007. Inada S., Kimura T., Yamaguchy T., “Effect of Green Compact Structure on the Sintering of Alumina”, Sci. of Sintering, Vol. 22, pp. 59~64, 1990. International Organization for Standardization, Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test), Reference number: ISO 11348-1:1998(E). Iori J., Balg J., Wieckert C., “Detoxification of Municipal Waste Incineration Residues by Vitrification”, ABB review, 6/7, pp. 9, 1995. Ishigaki T., Nakanishi A., Tateda M., Ike M., Fujita M. “Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria”, Chemosphere, 60, pp. 1087-1094, 2005. Izquierdo M., Moreno N., Font O., Querol X., Alvarez E., Antenucci D., Nugteren H., Luna Y., Fernandez-Pereira, C., “Influence of the co-firing on the leaching of trace pollutants from coal fly ash”, Fuel, Vol. 87, pp. 1958-1966, 2008. Izquierdo M., Querol X., Davidovits J., Antenucci D., Nugteren H., Fernandez-Pereira, C., “Coal fly ash-slag-based geopolymers: Microstructure and metal leaching”, Journal of Hazardous Materials, Vol. 166, pp. 561-566, 2009. Jacko R.B., Neuendorf D.W., Yost K.J., “Composition of particle emitted from the Nicosia municipal incinerator”, Environmental Science and Technology, Vol.12, pp.1329-1332, 1978. Jung B., Schobert H. H., “Viscous Sintering of Coal Ashes. 1. Relationships of Sinter Point and Sinter Strength to Particle Size and Composition”, Energy & Fuels, Vol. 5(4), pp. 555, 1991. Jung C.H., Osako M., “Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery”, Waste Management, Vol. 29, pp. 1532-1540, 2009. Jung C.H., Matsuto T., Tanaka N., “Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW)”, Waste Management Vol. 25 pp. 301-310, 2005. Jung,C.H., Matsuto T., Tanaka N., “Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW)”, Waste Management Vol. 25 pp. 301-310, 2005. Kakuta Y., Matsuto T., Tojo Y., Tomikawa H., “Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash”, Chemosphere Vol. 68, pp. 880-886, 2007. Kawakami I., Esaki M., Tetsuyama I., Sumitomo M., “Immobilization of fly ash from MSW incinerators and ash-melting furnaces”, Waste management, Vol. 16, pp. 483-489, 1996. Kida A., Noma Y., Imada T., “Chemical speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol.16, pp.527-536, 1996. Kilic A., Atis D. C., Yasar E., Ozcan F., “High-strength lightweight concrete made with scoria aggregate containing mineral admixtures”, Cement and Concrete Research, Vol.33, pp,1595-1599, 2003. Kim A.G., Hesbach P., “Comparison of fly ash leaching methods”, Fuel, Vol. 88, pp. 926-937. 2009. Kirk D.W., Chan C.C.Y., Marsh H., “Chromium behavior during thermal treatment of MSW fly ash”, Journal of Hazardous Materials, Vol. 90, pp. 39-49, 2002. Knacke O., Kubschewski O., Hcsselmann K., Thermochemical properties of inorganic substrance. (2nd Edn), New York, 1992. Kuczynski G. S., “Self-Diffusion in Sintering of Metallic Particles”, Trans. AIME, Vol. 185, pp. 169~178, 1949. Kuo Y.M., Lin T.C., Tsai P.J., “Metal behavior during vitrification of incinerator ash in a coke bed furnace”, Journal of Hazardous Materials, Vol. B109, pp. 79-84, 2004. Kuo J.H., Lin C.L., Wey M.Y., “Partitioning and Emission Characteristics of Pb and Organics during Fluidized Bed Thermal Treatment of Municipal Solid Waste Incineration (MSWI) Fly Ash”, Energy & Fuels, Vol.22, pp. 3789-3797, 2008 Kuokkanen T., Poykio R., Nurmesniemi H., Ramo J., “Sequential leaching of heavy metals and sulfur in bottom ash and fly ash from the co-combustion of wood and peat at a municipal district heating plant”, Chemical Speciation and Bioavailability, Vol. 18, pp. 131-142, 2006. Lasagni M., Collina E., Grandesso E., Piccinelli E., Pitea D., “Kinetics of carbon degradation and PCDD/PCDF formation on MSWI fly ash”, Chemosphere, Vol. 74, pp. 377-383, 2009. Lee C. C., “A Model Analysis of Metal Partitioning in a Hazardous Waste Incineration System”, Journal of Air Pollution Control Association, Vol. 38(7), pp.941~945, 1988. Lee T.C., Wang W.J., Shih P.Y., “Slag-cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit”, Construction and Building Materials, Vol. 22, pp. 1914-1921, 2008. Lim J.L., Kim S.W., Shin H.S., Okuda T., Okada M., “Leaching Behavior of lead from ultrasonically treated MSWI fly ash”, Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering Vol. 39, pp. 1587-1599, 2004. Lin K. L., Wang K. S., Lee T. Y., Tzeng B. Y. “The hydration characteristics of MSWI fly ash slag present in C3S”, Cement and Concrete Research, Vol. 33, pp. 957-964, 2003. Lin K. L., Wang K. S., Lin C. Y., Lin C. H., “The hydration properties of pastes containing municipal solid waste incinerator fly ash slag”, Journal of Hazardous Materials, B109, pp.173-181, 2004. Lin K. L., Wang K. S., Tzeng B. Y., Lin C. Y. “The reuse of municipal solid waste incinerator fly ash slag as a cement substitute”, Resources, Conservation and Recycling, Vol. 39, pp. 315-324, 2003. Lin K. L., Wang K. S., Tzeng B. Y., Wang N. F., Lin C. Y., “Effects of Al2O3 on the hydration activity of municipal solid waste incinerator fly ash slag”, Cement and Concrete Research, Vol. 34, pp. 587-592, 2004. Lin K.L., Chang C.T., “Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash”, Journal of Hazardous Materials, Vol. B135 pp. 296-302, 2006. Linak W. P., Peterson T. W., “Effect of Coal Type and Residence Time on the Submicron Aerosol Distribution from Pulverized Coal Combustion”, Aerosol Science and Technology, Vol. 3, pp. 77~95, 1984. Lingling X., Wei G., Tao W., Nanru Y., “Study on fired bricks with replacing clay by fly ash in high volume ratio ” Construction and Building Materials, Vol.19, pp.243-247, 2005. Liu Y, Zheng L., Li Z., Xie S., “SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures”, Journal of Hazardous Materials, Vol. 162, pp. 161-173, 2009. Liu Y, Zheng L., Li Z., Xie S., “SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures”, Journal of Hazardous Materials, Vol. 162, pp. 161-173, 2009. Liu Z. S., Wey M. Y., Lin C. L., “Capture of heavy metal from Incineration using the spray dryer integrated with the fabric filter with different additives”, J. of AWMA, Vol. 51, pp. 983-991, 2001. Liu Z. S., Wey M. Y., Lu S. J., “Thermal Treatment for Incinerator Ash:Evaporation and Leaching Rates of Metals”, Journal of Environmental Engineering, pp. 258~266, 2003. Liu F., Liu J.G., Yu Q.F., Jin Y.Y., Nie Y.F., “Leaching characteristics of heavy metals in municipal solid waste incinerator fly ash”, Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, Vol. 40, pp. 1975-1985, 2005. Liu Y.S., Zheng L.T., Li X.D., Xie S.D., “SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures”, Journal of Hazardous Materials, Vol. 162, pp. 161-173, 2009. Maken S., Jang S.H., Park J.W., Song H.C., Lee S., Chang, E.H., “Vitrification of MSWI fly ash using Brown''s gas and fate of heavy metals”, Journal of Scientific & Industrial Research, Vol. 64, pp. 198-204, 2005. Malhotra V.M., Valimbe P.S., Wtight M.A., “Effects of fly ash and bottom ash on the frictional behavior of composites”, Fuel, Vol.81, pp.235-244, 2002. Mangialardi T., “Disposal of MSWI fly ash through a combined washing-immobilisation process” Journal of Hazardous Materials, Vol. 98, pp. 225-240, 2003. Mangialardi T., “Sintering of MSW fly ash for reuse as a concrete aggregate”, Journal of Hazardous Materials, Vol.B87, pp.225-239, 2001. Massardier V., Moszkowicz P., Taha M., “Fly ash stabilization-solidification using polyermer-concrete double matrices”, European Polymer Journal, Vol. 33, pp. 1081-1086, 1997. Mulder E., “Pre-treatment of MSWI fly ash for useful application”, Waste Management, Vol.16, pp.181-184, 1996. Nagib S., Inoue K. “Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and or alkaline leaching”, Hydrometallurgy, 56, pp. 269-292, 2000. Navarro R., Guzman J., Saucedo I., Revilla J., Guibal E., “Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes”, Waste Management, Vol. 27, pp. 425-438, 2007. NiessenvW.R., Combustion and incineration processes: applications in environmental engineering, M. Dekker, New York, 1995 Nowok J. W., “Densification, shrinkage and strength development in selected coal ashes”, Journal of the Institute of Energy, pp. 9-11, 1996. Nunez R.P., Rey R.D., Menduina A.B.M., Silva M.T.B., “Physiologically based extraction of heavy metals in compost: Preliminary results:,Journal of Trace Elements in Medicine and Biology, Vol. 21, pp. 83-85, 2007. Okada T., Tojo, Y., Tanaka N., Matsuto T., “Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW - Comparison and applicability of chemical leaching methods”, Waste Management, Vol. 27, pp. 69-80, 2007. Ontiveros J. L., Clapp T. L., Kosson D. S., “Physical Properties and Chemical Species Distributions within Municipal Waste Combustor Ashes”, Environmental Progress, Vol. 8(3), pp. 200~206, 1989. Otero-Rey J.R., Mato-Fernandez M.J., Moreda-Pineiro J., Alonso-Rodriguez, E., Muniategui-Lorenzo, S., Lopez-Mahia, P., Prada-Rodriguez, D., “Influence of several experimental parameters on As and Se leaching from coal fly ash samples”, Analytica Chimica Acta, Vol. 531, pp. 299-305, 2005. Palumbo A.V., Tarver J.R., Fagan L.A., McNeilly M.S., Ruther R., Fisher L.S., Amonette J.E., “Comparing metal leaching and toxicity from high pH, low pH, and high ammonia fly ash”, Fuel, Vol. 86, pp. 1623-1630, 2007. Pan J.R., Huang C.P., Kuo J.J., Lin S.H., “Recycling MSWI bottom and fly ash as raw materials for Portland cement”, Waste Management, Vol. 28, pp. 1113-1118, 2008. Papadimitriou C.A., Haritou I., Samaras P., Zouboulis A.I., “Evaluation of leaching and ecotoxicological properties of sewage sludge-fly ash mixtures”, Environmental Research, Vol. 106, pp. 340-348, 2008. Parak K. and Hee S.Q., “Effect of dust on the viability of Vibrio fischeri in the Microtox test”, Ecotoxicology and environmental safety, Vol. 50, pp. 189-195, 2001. Park Y.J., “Stabilization of a chlorine-rich fly ash by colloidal silica solution”, Journal of Hazardous Materials, Vol. 162, pp.819-822, 2009. Park Y.J., Heo J., “Vitrification of fly ash from municipal solid waste incinerator”, Journal of Hazardous Materials, Vol. B91, pp. 83-93, 2002. Parvez S., Venkataraman C., Mukherji S., “A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals”, Environment International, Vol. 32 pp. 265-268, 2006. Pedersen P.J., “Evaluation of assisting agents for electrodialytic removal of Cd, Pb, Zn, Cu and Cr from MSWI fly ash”, Journal of Hazardous Materials, Vol. 95, pp. 185-198, 2002. Piantone P., Bodenan F., Derie R., Depelsenaire G., “Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach”, Waste Management, Vol. 23, pp. 225-243, 2003. Piantone P., Bodenan F., Derie R., Depelsenaire G., “Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach”, Waste Management, Vol. 23, pp. 225-243, 2003. Polettini A., Pomi R., Sirini P., “Fractional fractorial design to investigate the influence of heavy metals and anions on acid neutralization behavior for cement-based products”, Environ. Sci. Technol., Vol.36, pp.1584-1591, 2002. Polettini A., Pomi R., Sirini P., Testa F., “Properties of Portland cement—stabilized MSWI fly ashes”, Journal of Hazardous Materials, Vol. B88, pp. 123-138, 2001. Polettini A., Pomi R., Trinci L., Muntoni A., Mastro S.L., “Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash andlow-cost additives”, Chemosphere, Vol. 56, pp. 901-910, 2004. Qian G.G., Cao Y.L., Chui P., Tay J., “Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge”, Journal of Hazardous Materials, Vol. 129, pp. 274-281, 2006. Qian G.R., Yang X.Y., Dong S.X., Zhou J.Z., Sun Y., Xu Y.F., Liu Q., Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices. Journal of Hazardous Materials 165, 955-960. 2009. Querol X., Fernadez T. J. L., Lopez S. A., “Trace Elements in Coal and Their Behavior During Combustion in a Large Power Station, Fuel, Vol. 74(3), pp. 331~343, 1995. Ram L.C., Srivastava N.K., Tripathi R.C., Thakur S.K., Sinha A.K., Jha S.K., Masto R.E., Mitra S., “Leaching behavior of lignite fly ash with shake and column tests”, Environmental Geology, Vol. 51, pp. 1119-1132, 2007 Ren S., Frymier P.D., “Toxicity of metals and organic chemicals evaluated with bioluminescence assays”, Chemosphere, Vol. 58, pp. 543-550, 2005. Rubel, F. N., Incineration of solid wastes, Noyes Data, New Jersey, 1974 Ruby M.V., Davis A., Schoof R., Eberle S., Sellstone C.M., “Estimation of lead and arsenic bioavailability using a physiologically based extraction test”, Environmental Science & Technology, Vol. 30, pp. 422-430, 1996. Saikia N., Kato S., Kojima T. “Compositions and leaching behaviours of combustion residues”, Fuel, 85, pp. 264-271, 2006. Sakai S. I., Masakatsu H., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, pp. 249~258, 2000. Sarofim A. F., Pershing D. E., Dellinger B., Heap M. P., Owens W. D., “Emission of Metal and Organic Compounds from Cement Kilns Using Waste Derived Fuels”, Hazardous Waste and Hazardous Materials, Vol. 11(11), pp. 169~192, 1994. Scheckel K.G., Ryan J.A., Allen D., Lescano N.V., “Determining speciation of Pb in phosphate-amended soils: Method limitations”, Science of total environment, Vol. 350, pp. 261-272, 2005. Skodras G., Grammelis P., Prokopidou M., Kakaras E., Sakellaropoulos G., “Chemical, leaching and toxicity characteristics of CFB combustion residues”, Fuel, Vol. 88, pp. 1201-1209, 2009. Skrifvars B. J., Hupa M., Backman R., Hiltunen M., “Sintering Mechanisms of FBC Ashes”, Fuel, Vol. 73, No. 2, pp. 171~176, 1994. Smith J. M. and Van Ness H. C., Introduction to chemical engineering thermodynamics (4nd Edn), p. 538-540. McGraw-Hill Book Company, New York (1987). Steenar B. M., Lindqvist O., “High-Temperature Reaction of Straw Ash and the Anti-Sintering Additives Kaolin and Bolomite”, Biomass and Bioenergy, Vol. 14, No. 1, pp. 67, 1998. Tessier A., Campbell P. G. C., Bisson M., Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, Vol.51,pp. 844-854, 1979. Thipse S.S., Schoenitz M., Dreizin E. L., “Morpholigy and composition of the fly ash particles produced in incineration of municipal solid waste”, Fuel Processing Technology, Vol.75, pp.173-184, 2002. Ulrich G., A computer program for evaluating equilibrium temperature and compositions of complex chemical systems. Cabot Report 67-OX-11,1967. Verhulst D., Bueken A. Spencer P. J., Eriksson G., “Thermodynamic Behavior of Metal Chlorides and Sulfates under the Combustion of Incineration Furnaces”, Environmental Science and Techonology, Vol. 30, pp. 50~56, 1996. Wainwright P.J., Cresswell D.J.F., “Synthetic aggregates from combustion ashes using an innovative rotary kiln”, Waste Management, Vol. 21, pp.241-246, 2001. Wang K. S., Sun C. J., Yeh C. C., “The thermotreatment of MSW incinerator fly ash for use as an aggregate: a study of the characteristics of size-fractioning”, Resources, Conservation and Recycling, Vol. 35, pp. 177-190, 2002. Wang K.S., Chiang K.Y., Lin K.L., Sun C.J. “Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash”, Hydrometallurgy, 62, pp. 73-81, 2001. Wang K.S., Chiang K.Y., Perng J.K., Sun C.J., “The characteristics study on sintering of municipal solid waste incinerator ashes”, Journal of Hazardous Materials, Vol. 59, pp. 201-210, 1998. Wang K.S., Lin K.L., Lee H.W., “Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction”, Journal of Hazardous Materials, Vol. 162, pp.338-343, 2009. Wang Q., Tian S., Wang Q., Huang Q., Yang J., “Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace”, Journal of Hazardous Materials, Vol. 160, pp. 376-381, 2008. Wasserman R., Bentur A., “Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength”, Cement and Concrete Composites, Vol.18, pp. 67-76, 1996. Wei M. C., Wey M. Y., Huang J. H., Chen J. C., “Stability of Heavy Metals in Bottom Ash and Fly Ash under various Incineration Conditions”, Journal of Hazardous Materials, Vol. 57, pp. 145~154, 1998. Wey M. Y., “Dynamic Simulation of A High-temperature Slagging Incineration Process”, Computer chem. Engng , Vol. 17, No. 9, pp. 859~872, 1993. Wey M. Y., Fang T. J., “The Effect of Organic and Inorganic Chlorides on the Formation of HCl with Various Hydrogen Containing Sources in a Fluidized Bed Incineration”, Environmental International, Vol. 21, No. 4, pp. 423~431, 1995. Wey M. Y., Huang J. H., Chen J. C., “Mass and elemental size distribution of Chromium, Lead and cadmium Under Various Incineration Conditions”, Journal of Chemical Engineering of Japan, Vol. 31, No. 4, pp. 506~517, 1998. Wey M. Y., Huang J. H., Chen, J. C., “The Behavior of Heavy Metal Cr, Pb and Cd During Waste Incineration in Fluidized Bed under Various Chlorine Additives”, Journal of Chemical Engineering of Japan, Vol. 29, No. 3, pp. 494~500, 1996. Wey M. Y., Su J. L., Yan M. H., Wei M. C., “The concentration distribution of heavy metals under different incineration operation conditions”, The Science of the Total Environment, Vol. 212, pp. 183~193, 1998. Wey M. Y., Wu J. Y., Liu B. H., Lo J. G., “Migration Behavior of Zn, Cd and Hg Studied by Radiotracer”, Toxicological and Environmental Chemistry, Vol. 51, pp. 45~59, 1995. Wey M. Y., Yu L. J., Jou S. I., “The Influence of Heavy metals on the formation of organics and HCl during incinerating of PVC containing waste”, J. of Hazardous Materials, Vol. 60, pp. 259~270, 1998. Wey M.Y., Liu K.Y., Tsai T.H., Chou J.T., Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln”, Journal of Hazardous Materials Vol. B137, pp. 981-989, 2006. Wey M.Y., Liu K.Y., Tsai T.H., Chou J.T., Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln”, Journal of Hazardous Materials Vol. B137, pp. 981-989, 2006. Yang J., Wang Q., Luoa Q., Wang Q., Wu T. “Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger”, Biochemical Engineering Journal, Article in press Yang J., Xiao B., Boccaccini A.R., “Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash”, Fuel, Vol. 88, pp. 1275-1280, 2009. Yang J., Xiao B., Boccaccini A.R., “Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash”, Fuel, Vol. 88, pp. 1275-1280, 2009. Youcai Z., Lijie S., Guojian L. “Chemical stabilization of MSW incinerator fly ashes”, Journal of Hazardous Materials, B95, pp.47-63, 2002
摘要: 焚化飛灰因其重金屬溶出超出法規標準,屬有害事業廢棄物。本研究以焚化飛灰為處理對象,主要探討熱處理焚化飛灰之成效、重金屬物種溶出行為及熱處理過後重金屬型態分佈。並評估焚化飛灰及底灰之生物毒性,以尋求熱處理焚化飛灰之最佳操作條件。 三種不同焚化爐型(機械床、機械床+旋轉窯、流體化床)之實廠焚化飛灰及底灰以毒性溶出試驗(TCLP)及生理基礎萃取法(PBET)萃取後,進行生物毒性試驗。實驗結果發現焚化飛灰因含有較高重金屬濃度,其在TCLP或是PBET萃取液均有較高重金屬溶出濃度;比較三種不同焚化爐型,發現流體化床因其床質具有吸附重金屬之可能性,因此其所產生飛灰為三種爐型中重金屬溶出最低。在生物毒性測試方面,三種焚化飛灰及底灰之TCLP或是PBET萃取液均具有生物毒性。 熱處理前後焚化飛灰中重金屬鉛、銅及鎘經序列萃取法後其型態分佈之研究中發現,經過熱處理後底渣重金屬型態,鉛及銅以鐵錳氧化態及有機態分佈為主,鎘以碳酸鹽態為主。水洗前處理使得熱處理底渣鉛在有機態比例增加,銅則在鐵錳氧化態增加,但鎘之型態分佈則沒受影響;隨著熱處理時間增加,鉛、銅、鎘型態轉變為較穩定之型態。添加不同比例底灰於焚化飛灰,當底灰與飛灰比例為1:1時,經熱處理後鉛、銅及鎘之型態分佈轉變為較穩定之型態。本研究以以化學分析電子能譜儀分析模擬焚化飛灰中重金屬鉛可能物種與溶出行為之關係,在未經熱處理之模擬焚化飛灰中(含碳量 = 0%),鉛物種可能以PbO,PbO2及Pb3O4存在,當含碳量增加時,鉛物種可能以PbO、PbO2以及PbO-SiO2物種存在;經500 ℃熱處理過後,飛灰中鉛可能物種為PbO及Pb3O4,在700 ℃熱處理過後,鉛可能物種為元素鉛、PbO及PbO2,在900 ℃時鉛可能物種為PbO2, Pb3O4 and PbSiO3;當PbSiO3存在時,飛灰鉛之TCLP濃度有降低的現象。 本研究同時評估熱處理實廠焚化飛灰污染物逸散,操作條件包括水洗前處理、不同停留時間及不同比例底灰添加量。實驗結果發現,熱處理過程中,在氣相或在固相均有PAHs逸散,主要以其逸散物種以2、3環PAHs 如Acenaphthene為主,鉛只在固相有逸散情況;水洗前處理能降低底渣TCLP及固相PAHs逸散;隨著停留時間越長,底渣之TCLP會有降低的趨勢,逸散PAHs濃度也有下降的現象;添加不同比例底灰對底渣TCLP有降低現象。在毒性測試方面,未經熱處理前,焚化飛灰之毒性抑光率為98%,具高生物毒性,但經過熱處理抑光率則約為15%~38%,生物毒性有下降現象,統計分析t-test結果指出只有熱處理對於生物毒性下降據有顯著影響(P = 0.0017)。
Municipal solid waste incinerator (MSWI) fly ash is classified as hazardous materials because its toxicity characteristic leaching procedure (TCLP) concentration is high. The proper treatment of MSWI fly ash has become a major concern. This study focuses on the efficiency of thermal treatment, the relationship between lead (Pb) species and leaching behavior, and the heavy metals distribution of thermally treated fly ash. The biotoxicity of MSWI fly ash and bottom ash is also examined. The ultimate concern is to determine the optimum operation conditions for treating MSWI fly ash using thermal treatment. MSWI fly ash and bottom ash from three different incineration processes (mass-burning, mass-burning coupled with rotary kiln, and fluidized bed) were extracted using TCLP and physiologically based extraction test (PBET) in order to determine their bioavailability and toxicity. A comparison of the results of leaching concentration of MSWI fly ash with that of bottom ash showed that the TCLP and PBET leaching concentrations from MSWI fly ash were higher than those from MSWI bottom ash. The leaching concentration of fly ash from a fluidized bed incinerator was lower than those from mass-burning and mass burning coupled with rotary kiln due to the bed materials of the fluidized bed incinerator being able to adsorb heavy metal. The TCLP and PBET leachate from all MSWI fly ash and bottom ash had biotoxicity. The main fractions of lead and copper in thermally treated MSWI fly ash are Fe-Mn oxides and organic matter. Fe-Mn oxides and organic matter are the main fraction not only in lead but also in copper. The main fraction of cadmium in thermally treated MSWI fly ash is carbonated. Pretreatment (washing process) increases the percentage of organic matter of Pb and of Fe-Mn oxides in Cu in MSWI fly ash. As the reaction time of thermal treatment increases, the pattern distribution of Pb, Cu, and Cd becomes more stable. When the ratio of bottom ash and fly ash = 1:1, the percentage of organic matter of Pb in thermally treated fly ash increases from 13% to 42%; the percentage of Fe-Mn oxides of Cu in thermally treated fly ash increases from 19% to 30%. However, the occurrence of metal species relate to the leaching behavior of the metal concerned. Since Pb is a major metal in fly ash, the relationship between Pb species and the leaching properties of MSWI fly ash needs to be investigated. When carbon content increases, the main possible Pb species are PbO, PbO2, and PbO-SiO2 related compound. With thermal treatment in this study, the Pb (element) in treated fly ash increased the TCLP concentration of Pb when thermal treatment temperature (T) = 700 C. When T = 900 C, PbSiO3 existed in treated fly ash and the TCLP concentration of Pb was reduced. In the thermal treatment of MSWI fly ash, Pb emission occurred only in the solid phase, and polycyclic aromatic hydrocarbons (PAHs) were emitted from both the solid and gas phases during the thermal treatment process. Washing pretreatment not only reduced the TCLP leaching concentration of Pb (from 15.75mg/L to 1.67 mg/L), but also the emission of PAHs from the solid phase during the thermal treatment process. Adding bottom ash reduced the TCLP leaching concentration of thermally treated fly ash. The thermal treatment reduced the toxicity of untreated fly ash effectively, and the inhibition ratio of untreated fly ash and thermal treated fly ash were 98.71% and 18.35%, respectively.
URI: http://hdl.handle.net/11455/5701
其他識別: U0005-1908200923302900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908200923302900
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.