Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5702
DC FieldValueLanguage
dc.contributor蔡瀛逸zh_TW
dc.contributor.advisor鄭曼婷zh_TW
dc.contributor.author曾嘉汝zh_TW
dc.contributor.authorTseng, Chia-Juen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:35:22Z-
dc.date.available2014-06-06T06:35:22Z-
dc.identifierU0005-2008200909145000zh_TW
dc.identifier.citationBoman, J., M. J. Gatari, S. Janhäll, A. S. Shannigrahi and A. Wagner, “Elemental Content of PM2.5 Aerosol Particles Collected in Göteborg during the Göte-2005 Campaign in February 2005,” Atmospheric Chemistry and Physics, Vol. 9, No. 7, pp. 2597-2606 (2009). Brook, J. R., T. F. Dann and R. T. Burnett, “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Locations,” Journal of the Air & Waste Management Association, Vol. 47, pp. 2-19 (1997). Chang, C. Y., C. F. Wang, D. T. Mui, M. T. Cheng and H. L. Chiang, “Characteristics of Elements in Waste Ashes from a Solid Waste Incinerator in Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 766-773 (2009). Chen, L. C. and M. Lippmann, “Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health,” Inhalation Toxicology, Vol. 21, No. 1, pp. 1-31 (2009). Cheng, M. T., C. P. Chio, C. Y. Huang, J. M. Chen, C. F. Wang and C. Y. Kuo, “Chemical Compositions of Fine Particulates Emitted from Oil-fired Boilers,” Journal of Environmental Engineering and Management, Vol. 18, No. 5, pp. 355-362 (2008). Chen, L. C. and M. Lippmann, “Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health,” Inhalation Toxicology, Vol. 21, No. 1, pp. 1-31 (2009). Cheng, Y., S. C. Lee, J. Cao, K. F. Ho, J. C. Chow, J. G. Watson and C. H. Ao, “Elemental Composition of Airborne Aerosols at a Traffic Site and a Suburban Site in Hong Kong,” International Journal of Environment and Pollution, Vol. 36, No. 1-3, pp. 166-179 (2009c). Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, No. 39, pp. 6893-6905 (2004) Chow, J. C., J. G. Watson, E. M. Fujuta, Z. Lu and D. R. Lawson, “Temporal And Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study,” Atmospheric Environment, Vol. 28,No. 12, pp. 2061-2080 (1994). Christian, T. J., R. J. Yokelson, B. Cárdenas, L. T. Molina, G. Engling and S. C. Hsu, “Trace Gas and Particle Emissions from Domestic and Industrial Biofuel Use and Garbage Burning in Central Mexico,” Atmospheric Chemistry and Physics Discussions, Vol. 9, No. 2, pp. 10101-10152 (2009). Cohen, D. D., D. Garton, E. Stelcer, O. Hawas, T. Wang, S. Poon, J. Kim, B. C. Choi, S. N. Oh, H. J. Shin, M. Y. Ko and M. Uematsu, “Multielemental Analysis and Characterzation of Fine Aerosols at Several Key ACE-Asia Sites,” Journal of Geophysical Research, Vol. 109, D19S12, doi:10.1029/2003JD003569 (2004). Dongarrà, G., E. Manno and D. Varrica, “Possible Markers of Traffic-related Emissions,” Environmental Monitoring and Assessment, doi: 10.1007/s10661-008 -0382-7 (2009). (In press) Dongarrà, G., E. Manno, D. Varrica and M. Vultaggio, “Mass Levels, Crustal Compoment and Trace Elements in PM10 in Palermo, Italy,” Atmospheric Environment, Vol. 41, No. 36, pp. 7977-7986 (2007). Fang, G. C. and J. F. Lee, “Study of Atmospheric Particulates and Metallic Pollutants in Harbor and Traffic Areas in Central Taiwan,” Environmental Engineering Science, Vol. 25, No. 6, pp. 809-819 (2008). Fang, G. C., C. N. Chang, Y. S. Wu, M. H. Chen, T. T. Ho and S. H. Huang, “A Study of Metallic Elements at Suburban and Industrial Regions in Central Taiwan during 2002-2003,” Atmospheric Research, Vol. 70, No. 2, pp. 131-142 (2004). Gómez, D. R., M. F. Giné, A. C. S. Bellato and P. Smichoeski, “Antimony: a Traffic-related Element in the Atmosphere of Buenos Aires, Argentina,” Journal of Environmental Monitoring, Vol. 7, No. 12, pp. 1162-1168 (2005). Harrison, R. M., D. J. T. Smith and A. J. Kibble, “What is Responsible for the Carcinogenicity of PM2.5?,” Occupational and Environmental Medicine, Vol. 61, No. 10, pp. 799-805 (2004). Ho, K. F., S. C. Lee, C. K. Chan, J. C. Yu, J. C. Chow and X. H. Yao, “Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong,” Atmospheric Environment, Vol. 37, pp. 31-39 (2003). Hsu, S. C., S. C. Liu, Y. T. Huang, C. C. K. Chou, C. S. C. Lung, T. H. Liu, J. Y. Tu and F. Tsai, “Long-range Southeastward Transport of Asian Biosmoke Pollution: Signature Detected by Aerosol Potassium in Northern Taiwan,” Journal of Geophysical Research, doi:10.1029/2009JD011725 (2009). (In press) Hsu, S. C., S. C. Liu, C. Y. Lin, R. T. Hsu, Y. T. Huang and Y. W. Chen, “Metal Compositions of PM10 and PM2.5 Aerosols in Taipei during Spring, 2002,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 15, No. 5, pp. 925-948 (2004). Hu, C. W., M. R. Chao, K. Y. Wu, G. P. Chang-Chien, W. J. Lee, L. W. Chang and W. S. Lee, “Characterization of Multiple Airborne Particulate Metals in the Surroundings of a Municipal Waste Incinerator in Taiwan,” Atmospheric Environment, Vol. 37, No. 20, pp. 2845-2852 (2003). Hueglin, C., R. Gehrig, U. Baltensperger, M. Gysel, C. Monn and H. Vonmont, “Chemical Characterisation of PM2.5, PM10 and Coarse Particles at Urban, near City and Rural Sites in Switzerland,” Atmospheric Environment, Vol. 39, No. 4, pp. 637-651 (2005). Iijima, A., K. Sato, K. Yano, M. Kato, K. Kozawa and N. Furuta, “Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources,” Environmental Science & Technology, Vol. 42, No. 8, pp. 2937-2942 (2008). Katsumi, S., S. Koichiro, H. Koichiro and S. Tadashi “Chemical characterization of particles in winter-night smog in Tokyo,” Atmospheric Environment, Vol.36, pp. 435-440 (2002). Kuo, C. Y., J. Y. Wang, S. H. Chang and M. C. Chen, “Study of Metal Concentrations in the Environment near Diesel Transport Routes,” Atmospheric Environment, Vol. 43, No. 19, pp. 3070-3076 (2009). Kuo, C. Y., P. T. Chen, Y. C. Lin, C. Y. Lin, H. H. Chen and J. F. Shih, “Factors Affecting the Concentrations of PM10 in Central Taiwan,” Chemosphere, Vol. 70, No. 7, pp. 1273-1279 (2008). Kuo, S. C., L. Y. Hsieh, C. H. Tsai and Y. I. Tsai, “Characterization of PM2.5 Fugitive Metal in the Workplaces and the Surrounding Environment of a Secondary Aluminum Smelter,” Atmospheric Environment, Vol. 41, No. 32, pp. 6884-6900 (2007). Limbeck, A., M. Handler, C. Puls, J. Zbiral, H. Bauer and H. Puxbaum, “Impact of Mineral Components and Selected Trace Metals on Ambient PM10 Concentrations,” Atmospheric Environment, Vol. 43, No. 3, pp. 530-538 (2009). Lin, C. C., S. J. Chen, K. L. Huang, W. I. Hwang, G. P. Chang-Chien and W. Y. Lin, “Characteristics of Metals in Nano/Ultrafine/Fine/Coarse Particles Collected Beside a Heavily Trafficked Road,” Environmental Science & Technology, Vol. 39, No. 21, pp. 8113-8122 (2005a). Lopez, J. M., M. S. Callen, R. Murillo, T. Garcia, M. V. Navarro, M. T. de la Cruz, and A. M. Mastral, “Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain),” Environmental Research, pp. 58-67 (2005). Malm, W. C., B. A. Schichtel, M. L. Pitchford, L. L. Ashbaugh and R. A. Eldred, “Spatial and Monthly Trends in Speciated Fine Particle Concentration in the United States,” Journal of Geophysical Research, Vol. 109 (2004). Millero, F. J., R. Feistel, D. G. Wright and T. J. McDougallm, “The Composition of Standard Seawater and the Definition of the Reference-composition Salinity Scale,” Deep Sea Research: Part I, Vol. 55, No. 1, pp. 50-72 (2008). Moreno, T., A. Alastuey, X. Querol, O. Font and W. Gibbons, “The Identification of Metallic Elements in Airborne Particulate Matter Derived from Fossil Fuels at Puertollano, Spain,” International Journal of Coal Geology, Vol. 71, No. 2-3, pp. 122-128 (2007). Moreno, T., X. Querol, A. Alastuey, M. Viana, P. Salvador, A. S. de la Campa, B. Artiñano, J. de la Rosa and W. Gibbons, “Variations in Atmospheric PM Trace Metal Content in Spanish Towns: Illustrating the Chemical Complexity of the Inorganic Urban Aerosol Cocktail,” Atmospheric Environment, Vol. 40, No. 35, pp. 6791-6803 (2006). Okuda, T., M. Katsuno, D. Naoi, S. Nakao, S. Tanaka, K. He, Y. Ma, Y. Lei and Y. Jia, “Trends in Hazardous Trace Metal Concentrations in Aerosols Collected in Beijing, China from 2001 to 2006,” Chemosphere, Vol. 72, No. 6, pp. 917-924 (2008). Pakkanen, T. A., “Study of Formation of Coarse Particle Nitrate Aerosol,” Atmospheric Environment, Vol.30, No.14, pp. 2475-2482 (1996). Pérez, N., J. Pey, X. Querol, A. Alastuey, J. M. López and M. Viana, “Partitioning of Major and Trace Components in PM10-PM2.5-PM1 at an Urban Site in Southern Europe,” Atmospheric Environment, Vol. 42, No. 8, pp. 1677-1691 (2008). Perrino, C., S. Canepari, E. Cardarelli, M. Catrambone and T. Sargolini, “Inorganic Constituents of Urban Air Pollution in the Lazio Region (Central Italy),” Environmental Monitoring and Assessment, Vol. 136, No. 1-3, pp. 69-86 (2008). Querol, X., M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, J. Pey, J. de la Rosa, A. Sánchez de la Campa, B. Artíñano, P. Salvador, S. García Dos Santos, R. Fernández-Patier, S. Moreno-Grau, L. Negral, M. C. Minguillón, E. Monfort, J. I. Gil, A. Inza, L. A. Ortega, J. M. Santamaría and J. Zabalza, “Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain,” Atmospheric Environment, Vol. 41, No. 34, pp. 7219-7231 (2007). Rahn, K. A., “A Graphical Technique for Determining Major Components in a Mixed Aerosol. I. Descriptive Aspects,” Atmospheric Environment, Vol. 33, No. 9, pp. 1441-1455 (1999). Rao, M. N. and H. V. N. Rao, “Air pollution, 1-14. New Delhi: Tata McGraw-Hill” (1989). Taylor, S. R., “Abundance of Chemical Elements in the Continental Crust: a New Table,” Geochimica et Cosmochimica Acta, Vol. 28, No. 8, pp. 1273-1285 (1964). Thorpe, A. and R. M. Harrison, “Sources and Properities of Non-exhaust Particulate Matter from Road Traffic: a Review,” Science of the Total Environment, Vol. 400, No. 1-3, pp. 270-282 (2008). Tsai, J. H., K. H. Lin, C. Y. Chen, J. Y. Ding, C. G. Choa and H. L. Chiang, “Chemical Constituents in Particulate Emissions from an Integrated Iron and Steel Facility,” Journal of Hazardous Materials, Vol. 147, No. 1-2, pp. 111-119 (2007). Tsai, Y. I. and S. C. Kuo, “PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan,” Atmospheric Environment, Vol. 39, pp.4827-4839 (2005). Wåhlin, P., R. Berkowicz and F. Palmgren, “Characterization of Traffic-generated Particulate Matter in Copenhagen,” Atmospheric Environment, Vol. 40, No. 12, pp. 2151-2159 (2006). Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, “Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan,” Journal of the Air & Waste Management Association, Vol. 55, No. 8, pp. 1236-1244 (2005). Wang, Y. F., Y. I. Tsai, H. H. Mi, H. H. Yang and Y. F. Chang, “PM10 Metal Distribution in an Industrialized City,” Bulletin of Environmental Contamination and Toxicology, Vol. 77, No. 4, pp. 624-630 (2006b). Wang, Y. F., K. L. Huang, C. T. Li, H. H. Mi, J. H. Luo and P. J. Tsai, “Emissions of Fuel Metals Content from a Diesel Vehicle Engine,” Atmospheric Environment, Vol. 37, No. 33, pp. 4637-4643 (2003). Watson, J. G., “Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5,” The Science of Fine Particlate Matter, pp. 1-14 (1998). Wilson, J. G., S. Kingham, J. Pearce and A. P. Sturman, “A Review of Intraurban Variations in Particulate Air Pollution: Implications for Epidemiological Research,” Atmospheric Environment, Vol. 39, No. 34, pp. 6444-6462 (2005). Smichowski, P., D. Gómez, C. Frazzoli and S. Caroli, “Traffic-related Elements in Airborne Particulate Matter,” Applied Spectroscopy Reviews, Vol. 43, No. 1, pp. 23-49 (2008). Xavier, Q., A. Andrés, R. Sergio, P. Felicià, R. R. Carmen, C. Nuria, M. Guillem and P. Oriol, “PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain,” Atmospheric Environment, Vol. 35, pp. 6407-6419 (2001). Xie, R., H. M. Seip, G. Wibetoe, S. Nori and C. W. McLeod, “Heavy Coal Combustion as the Dominant Source of Particulate Pollution in Taiyuan, China, Corroborated by High Concentrations of Arsenic and Selenium in PM10,” Science of the Total Environment, Vol. 370, No. 2-3, pp. 409-415 (2006). Yang, H. H., P. C. Chen, L. T. Hsieh, M. C. Lin and K. L. Huang, “Characteristics of Atmospheric Metals during Dry Monsoon Season in the Coastal Region of Western Taiwan,” Aerosol and Air Quality Research, Vol. 3, No. 1, pp. 29-39 (2003). 林順信,「台中都會區大氣懸浮微粒中元素之時間變化與特性」,碩士論文,國立中興大學環境工程學系,台中(2009)。 許美華,「應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源」,碩士論文,國立中興大學環境工程學系,台中(2008)。 曾國書,「屏東都會區粗細懸浮微粒特性之研究」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2006)。 黃教信,「台北地區大氣懸浮微粒中金屬元素之濃度、來源及通量研究」,碩士論文,國立台灣大學海洋研究所,台北(2004)。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5702-
dc.description.abstract本研究於2008年11月至2009年5月期間,在鹿港及二林地區利用雙粒徑高量採樣器進行兩次大氣懸浮微粒密集觀測,於此兩地區冬春季各採集21組大氣懸浮微粒PM2.5與PM2.5-10之樣本,後續再利用感應耦合電漿質譜儀分析微粒中20種元素(Al、Fe、Na、Mg、K、Ca、Sr、Ti、Mn、Co、Ni、Cu、Zn、Cd、Sb、Pb、V、Cr、As及Se)的濃度,此研究目的主要建立將開發為中部第四期科學園區的二林與未來可能設置彰工電廠的鹿港地區的空氣懸浮微粒的元素組成,建立此基本資料以提供未來科學園區及電廠營運後的比較參考。 研究結果顯示二林地區於冬季東北季風期間20種元素總濃度分別佔PM2.5與PM2.5-10的5.46%與16.60%,春季期間則佔3.10%與9.28%;鹿港地區於東北季風期間20種元素總濃度分別佔PM2.5與PM2.5-10的8.01%與17.88%,春季期間則佔3.41%與11.06%,兩地區皆顯示20種元素在微粒中的百分比為東北季風期間高於春季期間。利用富集因子區分二林與鹿港地區大氣懸浮微粒中元素之來源,來自地殼源之元素有Al、Ti、Mg、K、Fe、Sr及Ca,主要分佈於PM2.5-10中;人為排放源之元素則有As、Cu、Zn、Cd、Pb、Se及Sb,主要集中在PM2.5中。比較兩次密集觀測結果,二林和鹿港地區大氣懸浮微粒之元素含量皆是東北季風期間高於春季期間,主要差異之原因為兩地區於冬季東北季風盛行期間,風速大造成揚塵現象,微粒中的地殼元素明顯增加。綜合研究成果,目前二林地區於東北季風盛行期間,大氣懸浮微粒中地殼元素明顯增加;而鹿港地區於東北季風期間可能受到北方火力發電廠和焚化爐排放之影響,前者可能影響鹿港地區PM2.5中As和Se的濃度,而後者影響其Cd和Zn的濃度。zh_TW
dc.description.abstractAtmospheric aerosol particles were collected in Lukang and Erlin areas by using High Volume Air Samplers during the period from November 2008 to May 2009. Totally 21 samples of PM2.5 and PM2.5-10 were collected. The samples were then further analyzed to determine the concentration of 20 elements (Al, Fe, Na, Mg, K, Ca, Sr, Ti, Mn, Co, Ni, Cu, Zn, Cd, Sb, Pb, V, Cr, As and Se) by using inductively coupled plasma mass spectrometry (ICP-MS). The purpose of this study was to establish the fundamental data regarding the compositions of the ambient particulates before the operation of Phase IV Central Science Park at Erlin and the building of power plant at Lukang. This study will provide the reference for comparing the air quality before and after the construction of the science park and the power plant. The results showed that the total concentration of the 20 elements in PM2.5 and PM2.5-10 were 5.46% and 16.60% , respectively, during the northeast monsoon in winter at Erlin, whereas 3.10% and 9.28% , respectively, for the spring. Data obtained at Lukang indicated the total concentration of the 20 elements for PM2.5 and PM2.5-10 were respectively 8.01% and 17.88% in winter, 3.41% and 11.06% , respectively, in spring. Both areas had shown that the percentage of the elements in PM10 measured during the northeast monsoon period were higher than those obtained in spring. The enrichment factor was used to identify the sources of the aerosol particles. The results showed that the crustal elements were Al, Ti, Mg, K, Fe, Sr, and Ca, mainly distributed in PM2.5-10 and the anthropogenic elements were As, Cu, Zn, Cd, Pb, Se, and Sb, which were found mainly in PM2.5. Comparing the results obtained in the winter and in the spring, the element contents in the ambient particles at both sampling sites were all higher during the northeast monsoon period. The reason caused such differences was due to the higher wind speed which causing the crustal elements significantly increased. In conclusion, this study showed the crustal elements in the particulates at Erlin were significantly increased in the northeast monsoon. However the air quality at Lukang might be affected by the thermal power plant and the incinerator both located in the north of Lukang. The former may affect the concentrations of As and Se and the incinerator may affect the concentrations of Cd and Zn.en_US
dc.description.tableofcontents致謝 I 摘要 II Abstract III 目錄 V 表目錄 IX 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的與方法 2 第二章 文獻回顧 3 2.1中部地區空氣污染排放之特性 3 2.2大氣懸浮微粒之特性 8 2.2.1大氣懸浮微粒之來源 8 2.2.2 影響懸浮微粒濃度之因子 8 2.2.3 大氣懸浮微粒之成分特性 9 2.3大氣懸浮微粒中元素之來源與特性 12 2.4國內外大氣懸浮微粒中元素之研究 14 第三章 實驗與分析方法 16 3.1採樣地點及時間 16 3.1.1採樣地點 16 3.1.2採樣時間 18 3.2採樣設備 19 3.3大氣懸浮微粒樣本中元素之分析 19 3.3.1 濾紙處理程序 19 3.3.2 微粒樣本之前處理程序 21 3.3.3 微粒樣本中元素濃度之定量分析 22 3.4大氣懸浮微粒樣本中元污染源之分析 23 3.4.1 富集因子法 23 3.4.2 特徵元素推估污染源貢獻量 24 第四章 結果與討論 27 4.1大氣懸浮微粒質量濃度 27 4.1.1觀測站與環保署空品測站監測值之比較 27 4.1.2懸浮微粒質量濃度之變化 28 4.2二林與鹿港地區大氣懸浮微粒中元素之特性 32 4.2.1二林地區大氣懸浮微粒中元素之濃度 32 4.2.2鹿港地區大氣懸浮微粒中元素之濃度 35 4.2.3二林與鹿港地區大氣懸浮微粒中元素濃度之比較 38 4.2.4二林與鹿港地區大氣懸浮微粒中元素之粒徑特性 42 4.2.5與國內其他地區大氣懸浮微粒中元素濃度之比較 44 4.3二林與鹿港地區大氣懸浮微粒中元素汙染源之分析 47 4.3.1富集因子分析 47 4.3.2二林與鹿港地區大氣懸浮微粒中元素特性之差異 49 4.4大氣懸浮微粒中元素組成之比較 52 4.4.1二林、鹿港地區懸浮微粒中各元素組成之比較 52 4.4.2兩測站之東北季風與春季期間微粒中各元素組成之比較 58 4.4.3自然源對二林與鹿港地區懸浮微粒之貢獻 64 第五章 結論與建議 69 5.1結論 69 5.2建議 72 參考文獻 73 附錄A 79 實驗品保/品管(QA/QC)資料 79zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200909145000en_US
dc.subjectAmbient Particulatesen_US
dc.subject大氣懸浮微粒zh_TW
dc.subjectElementalen_US
dc.subject元素zh_TW
dc.title鹿港和二林地區大氣懸浮微粒元素組成之研究zh_TW
dc.titleInvestigation of Elemental Compositions in Ambient Particulates within Lukang and Erlin Areasen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:環境工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.